Sufficient conditions for the existence of undecidable indirectly reflective sentences
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 12-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Indirectly reflective sentences in the $\omega$-consistent theory of formal arithmetic are studied. Sufficient conditions for the existence of undecidable indirectly reflective sentences are proved.
Keywords: formal arithmetic, undecidable sentences.
Mots-clés : indirect reflexion
@article{VTGU_2015_3_a1,
     author = {V. M. Zyuz'kov},
     title = {Sufficient conditions for the existence of undecidable indirectly reflective sentences},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {12--17},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a1/}
}
TY  - JOUR
AU  - V. M. Zyuz'kov
TI  - Sufficient conditions for the existence of undecidable indirectly reflective sentences
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 12
EP  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a1/
LA  - ru
ID  - VTGU_2015_3_a1
ER  - 
%0 Journal Article
%A V. M. Zyuz'kov
%T Sufficient conditions for the existence of undecidable indirectly reflective sentences
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 12-17
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a1/
%G ru
%F VTGU_2015_3_a1
V. M. Zyuz'kov. Sufficient conditions for the existence of undecidable indirectly reflective sentences. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 12-17. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a1/

[1] Mendelson E., Introduction to Mathematical Logic, Chapman Hall, 1998 | MR | MR

[2] Boolos G., Jeffrey R., Computability and Logic, Cambridge University Press, 1974 | MR | Zbl

[3] Zyuz'kov V. M., “Nerazreshimye kosvenno refleksivnye predlozheniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 1(9), 21–33 (in Russian) | MR

[4] Smullyan R. M., Gödel's Incompleteness Theorem, Oxford University Press, Oxford, 1992 | MR