Residual properties of Abelian groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\pi$ be a set of primes. For Abelian groups, the necessary and sufficient condition to be a virtually residually finite $\pi$-group is obtained, as well as a characterization of potent Abelian groups. Recall that a group $G$ is said to be a residually finite $\pi$-group if for every nonidentity element a of $G$ there exists a homomorphism of the group $G$ onto some finite $\pi$-group such that the image of the element a differs from 1. A group $G$ is said to be a virtually residually finite $\pi$-group if it contains a finite index subgroup which is a residually finite $\pi$-group. Recall that an element $g$ in $G$ is said to be $\pi$-radicable if g is an mth power of an element of $G$ for every positive $\pi$-number $m$. Let $A$ be an Abelian group. It is well known that $A$ is a residually finite $\pi$-group if and only if $A$ has no nonidentity $\pi$-radicable elements. Suppose now that $\pi$ does not coincide with the set $\Pi$ of all primes. Let $\pi'$ be the complement of $\pi$ in the set $\Pi$. And let $T$ be a $\pi'$-component of $A$, i.e., $T$ be a set of all elements of $A$ whose orders are finite $\pi'$-numbers. We prove that the following three statements are equivalent to each other: (1) the group $A$ is a virtually residually finite $\pi$-group; (2) the subgroup $T$ is finite and the quotient group $A/T$ is a residually finite $\pi$-group; (3) the subgroup $T$ is finite and $T$ coincides with the set of all $\pi$-radicable elements of $A$.
Keywords: Abelian group, residually finite group.
@article{VTGU_2015_3_a0,
     author = {D. N. Azarov},
     title = {Residual properties of {Abelian} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--11},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residual properties of Abelian groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 5
EP  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a0/
LA  - ru
ID  - VTGU_2015_3_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residual properties of Abelian groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 5-11
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a0/
%G ru
%F VTGU_2015_3_a0
D. N. Azarov. Residual properties of Abelian groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 5-11. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a0/

[1] Mal'tsev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Mat. sb., 8:3 (1940), 405–422 (in Russian) | MR

[2] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | MR

[3] Shmel'kin A. L., “Politsiklicheskie gruppy”, Sib. matem. zhurnal, 9 (1968), 234–235 (in Russian) | MR

[4] Mal'tsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18:5 (1958), 49–60 (in Russian)

[5] Azarov D. N., “Nekotorye approksimatsionnye svoystva grupp konechnogo ranga”, Model. i analiz inform. sistem, 21:2 (2014), 50–55 (in Russian)

[6] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[7] Azarov D. N., “Approksimiruemost' razreshimykh grupp konechnogo ranga nekotorymi klassami konechnykh grupp”, Izvestiya vuzov. Matematika, 2014, no. 8, 18–29 (in Russian) | MR

[8] Azarov D. N., “Nekotorye approksimatsionnye svoystva razreshimykh grupp konechnogo ranga”, Chebyshevskiy sbornik, 15:1(49) (2014), 7–18 (in Russian) | MR

[9] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka Publ., M., 1972 (in Russian) | MR