Evolution of a thermal plume in a thin vertical layer
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 41-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An experimental investigation of the propagation of a thermal plume in a thin liquid layer under the influence of a point heating from below is carried out. The temperature field was visualized using an IR camera. The distribution of heat on the interface between salt glass and fluid was measured. Stages of the evolution of the thermal plume are described. A qualitative agreement with the known mechanism of motion of an axisymmetric plume was shown. The influence of a warm heat source on the speed of the thermal wave front was investigated. The necessity of taking into account this effect in the case of the slow development of the plume the duration of which exceeds the relaxation time of the heater by several times is noted. We have obtained the power law connecting the velocity of the wave front and effective heat output. The results are compared with experimental works of other authors, as well as with the proposed theory for the motion of the wave front away from the heat source and boundaries of the cavity. It is shown that the propagation velocity of the thermal front in a thin layer has a substantially lower rate in the absence of its lateral boundaries.
Keywords: thin vertical layer, local heat source
Mots-clés : thermal plume.
@article{VTGU_2015_2_a3,
     author = {I. A. Babushkin and A. N. Kondrashov and K. A. Rybkin and I. O. Sboev},
     title = {Evolution of a thermal plume in a thin vertical layer},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {41--51},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a3/}
}
TY  - JOUR
AU  - I. A. Babushkin
AU  - A. N. Kondrashov
AU  - K. A. Rybkin
AU  - I. O. Sboev
TI  - Evolution of a thermal plume in a thin vertical layer
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 41
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a3/
LA  - ru
ID  - VTGU_2015_2_a3
ER  - 
%0 Journal Article
%A I. A. Babushkin
%A A. N. Kondrashov
%A K. A. Rybkin
%A I. O. Sboev
%T Evolution of a thermal plume in a thin vertical layer
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 41-51
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2015_2_a3/
%G ru
%F VTGU_2015_2_a3
I. A. Babushkin; A. N. Kondrashov; K. A. Rybkin; I. O. Sboev. Evolution of a thermal plume in a thin vertical layer. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 41-51. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a3/

[1] Kaminski E., Jaupart C., “Laminar starting plumes in high-Prandtl number fluids”, J. Fluid Mech., 478 (2003), 287–298 | DOI

[2] Lithgow-Bertelloni C., Richards M. A., Conrad C. P., Griffiths R. W., “Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers”, J. Fluid Mech., 434 (2001), 1–21 | DOI

[3] Turner J. S., “Buoyant plumes and thermals”, Annual Review of Fluid Mechanics, 1:1 (1969), 29–44 | DOI

[4] Shlien D. J., Thompson D. W., “Some experiments on the motion of an isolated laminar thermal”, Journal of Fluid Mechanics, 72:1 (1975), 35–47 | DOI

[5] Babushkin I. A., Demin V. A., Kondrashov A. N., Pepelyaev D. V., “Teplovaya konvektsiya v yacheyke Khele–Shou pri deystvii tsentrobezhnykh sil”, Izv. RAN. Mekhanika zhidkosti i gaza, 2012, no. 1, 14–25 (in Russian)

[6] Eckert K., Grahn A., “Plume and finger regimes driven by an exothermic interfacial reaction”, Physical Review Letters, 82:22 (1999), 4436–4439 | DOI

[7] Shlien D. J., “Method for heat injection into a liquid”, Review of Scientific Instruments, 48:9 (2008), 1152–1153 | DOI

[8] Shlien D. J., “Some laminar thermal and plume experiments”, Physics of Fluids (1958–1988), 19:8 (2008), 1089–1098 | DOI

[9] Gavrilov K. A., Demin V. A., Popov E. A., “Rezhimy vsplytiya teplovykh plyumov v vertikal'nom sloe”, Vychislitel'naya mekhanika sploshnykh sred, 6:3 (2013), 261–268 (in Russian)

[10] Lappa M., Thermal Convection: Patterns, Evolution and Stability, Wiley, UK, 2010, 670 pp.

[11] Majumder C. A., Hier Yuen D. A., Vincent A. P., “Four dynamical regimes for a starting plume model”, Physics of Fluids (1994-present), 16:5 (2004), 1516–1531 | DOI

[12] Batchelor G. K., “Heat convection and buoyancy effects in fluids”, Quarterly Journal of the Royal Meteorological Society, 80:345 (1954), 339–358 | DOI

[13] Shlien D. J., “Transition of the axisymmetric starting plume cap”, Physics of Fluids (1958–1988), 21:12 (1978), 2154–2158 | DOI

[14] Moses E. et al., “An experimental study of laminar plumes”, Journal of Fluid Mechanics, 251 (1993), 581–601 | DOI

[15] Worster M. G., “The axisymmetric laminar plume: asymptotic solution for large Prandtl number”, Stud. Appl. Maths., 75 (1986), 139–152

[16] Babushkin I. A., Kondrashov A. N., Sboev I. O., “Razvitie konvektivnogo fakela v vertikal'nom sloe”, Vestnik Permskogo universiteta. Ser. Fizika, 2012, no. 4(22), 101–105 (in Russian)

[17] Davaille A. et al., “Anatomy of a laminar starting thermal plume at high Prandtl number”, Experiments in Fluids, 50:2 (2011), 285–300 | DOI