On $2$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $h(x, y, z)$ denote the standard orientation of the plane $\mathbf{R}^2$. Let $M$ be a non-empty set, $\zeta: M\to\{0, +1, -1\}$. If for every subset $A$ of a set $M$, $|A|\leqslant 5$, there exists a map $\phi: A\to\mathbf{R}^2$, such that $x, y, z\in A$ implies $$ \zeta(x, y, z)=\eta(\phi(x), \phi(y), \phi(z)), $$ then $(M, \zeta)$ is called a $2$-ordered set and $\zeta$ is called a $2$-order function on $M$. If $\zeta$ is a $2$-order function on a group $G$ such that for every $x, y, z, a$ from the group $G$ the equality $$ \zeta(ax, ay, az)=\zeta(xa, ya, za)=\zeta(x, y, z) $$ holds, then $G$ is said to be a $2$-ordered group. The paper contains new examples of $2$-ordered groups. It is proved that every $2$-ordered group contains only one involution or none. A criterion is formulated for a straight line in a $2$-ordered group $G$ to be a subgroup of $G$.
Keywords: two-dimensional order, $2$-ordered group, involution, straight line.
@article{VTGU_2015_2_a2,
     author = {G. G. Pestov and A. I. Zabarina and A. A. Tobolkin and E. A. Fomina},
     title = {On $2$-ordered groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {30--40},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/}
}
TY  - JOUR
AU  - G. G. Pestov
AU  - A. I. Zabarina
AU  - A. A. Tobolkin
AU  - E. A. Fomina
TI  - On $2$-ordered groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 30
EP  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/
LA  - ru
ID  - VTGU_2015_2_a2
ER  - 
%0 Journal Article
%A G. G. Pestov
%A A. I. Zabarina
%A A. A. Tobolkin
%A E. A. Fomina
%T On $2$-ordered groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 30-40
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/
%G ru
%F VTGU_2015_2_a2
G. G. Pestov; A. I. Zabarina; A. A. Tobolkin; E. A. Fomina. On $2$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/

[1] Pestov G. G., Dvumerno uporyadochennye polya, Tomsk St. Univ. Publ., Tomsk, 2003, 128 pp. (in Russian)

[2] Zabarina A. I., Pestov G. G., “Ob $n$-merno uporyadochennykh gruppakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2003, no. 280, 40–43 (in Russian)

[3] Zabarina A. I., O tsiklicheski uporyadochennykh gruppakh, Dis. ... kand. fiz-mat. nauk: 01.01.06, Tomsk, 1984, 84 pp. (in Russian)

[4] Väth M., Nonstandard Analysis, Birkhäuser Verlag, Basel, 2007, 252 pp.

[5] Tobolkin A. A., K teorii $n$-uporyadochennykh grupp, Dis. ... kand. fiz.-mat. nauk: 01.01.06, Tomsk, 2009, 71 pp. (in Russian)

[6] Zabarina A. I., Pestov G. G., “Dvumerno uporyadochennye gruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 1(13), 5–8 (in Russian)

[7] Pestov G. G., Fomina E. A., “Podpole $B$ beskonechno blizkikh k baze elementov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 41–47 (in Russian)

[8] Pestov G. G., Fomina E. A., “Konstruktsiya beskonechno uzkogo dvumerno uporyadochennogo polya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2007, no. 1(1), 50–53 (in Russian)

[9] Fomina E. A., “Kriteriy beskonechno uzkogo polya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 1(5), 27–30 (in Russian)

[10] Fomina E. A., “K voprosu o beskonechno blizkikh k baze elementakh”, XIII Vserossiyskaya konferentsiya studentov, aspirantov i molodykh uchenykh «Nauka i obrazovanie» (April 20–24, 2009), v. 1, Estestvennye i tochnye nauki, TGPU Publ., Tomsk, 2009, 25–28 (in Russian)

[11] Izbrannye voprosy algebry, Sbornik statey, posvyashchennyy pamyati N. Ya. Medvedeva, AltGU Publ., Barnaul, 2007, 310 pp. (in Russian)