On $2$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $h(x, y, z)$ denote the standard orientation of the plane $\mathbf{R}^2$. Let $M$ be a non-empty set, $\zeta: M\to\{0, +1, -1\}$.
If for every subset $A$ of a set $M$, $|A|\leqslant 5$, there exists a map $\phi: A\to\mathbf{R}^2$, such that $x, y, z\in A$ implies
$$
\zeta(x, y, z)=\eta(\phi(x), \phi(y), \phi(z)),
$$
then $(M, \zeta)$ is called a $2$-ordered set and $\zeta$ is called a $2$-order function on $M$.
If $\zeta$ is a $2$-order function on a group $G$ such that for every $x, y, z, a$ from the group $G$ the
equality
$$
\zeta(ax, ay, az)=\zeta(xa, ya, za)=\zeta(x, y, z)
$$
holds, then $G$ is said to be a $2$-ordered group.
The paper contains new examples of $2$-ordered groups. It is proved that every $2$-ordered group
contains only one involution or none. A criterion is formulated for a straight line in a $2$-ordered
group $G$ to be a subgroup of $G$.
Keywords:
two-dimensional order, $2$-ordered group, involution, straight line.
@article{VTGU_2015_2_a2,
author = {G. G. Pestov and A. I. Zabarina and A. A. Tobolkin and E. A. Fomina},
title = {On $2$-ordered groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {30--40},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/}
}
TY - JOUR AU - G. G. Pestov AU - A. I. Zabarina AU - A. A. Tobolkin AU - E. A. Fomina TI - On $2$-ordered groups JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2015 SP - 30 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/ LA - ru ID - VTGU_2015_2_a2 ER -
G. G. Pestov; A. I. Zabarina; A. A. Tobolkin; E. A. Fomina. On $2$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/