On $2$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $h(x, y, z)$ denote the standard orientation of the plane $\mathbf{R}^2$. Let $M$ be a non-empty set, $\zeta: M\to\{0, +1, -1\}$. If for every subset $A$ of a set $M$, $|A|\leqslant 5$, there exists a map $\phi: A\to\mathbf{R}^2$, such that $x, y, z\in A$ implies $$ \zeta(x, y, z)=\eta(\phi(x), \phi(y), \phi(z)), $$ then $(M, \zeta)$ is called a $2$-ordered set and $\zeta$ is called a $2$-order function on $M$. If $\zeta$ is a $2$-order function on a group $G$ such that for every $x, y, z, a$ from the group $G$ the equality $$ \zeta(ax, ay, az)=\zeta(xa, ya, za)=\zeta(x, y, z) $$ holds, then $G$ is said to be a $2$-ordered group. The paper contains new examples of $2$-ordered groups. It is proved that every $2$-ordered group contains only one involution or none. A criterion is formulated for a straight line in a $2$-ordered group $G$ to be a subgroup of $G$.
Keywords: two-dimensional order, $2$-ordered group, involution, straight line.
@article{VTGU_2015_2_a2,
     author = {G. G. Pestov and A. I. Zabarina and A. A. Tobolkin and E. A. Fomina},
     title = {On $2$-ordered groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {30--40},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/}
}
TY  - JOUR
AU  - G. G. Pestov
AU  - A. I. Zabarina
AU  - A. A. Tobolkin
AU  - E. A. Fomina
TI  - On $2$-ordered groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 30
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/
LA  - ru
ID  - VTGU_2015_2_a2
ER  - 
%0 Journal Article
%A G. G. Pestov
%A A. I. Zabarina
%A A. A. Tobolkin
%A E. A. Fomina
%T On $2$-ordered groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 30-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/
%G ru
%F VTGU_2015_2_a2
G. G. Pestov; A. I. Zabarina; A. A. Tobolkin; E. A. Fomina. On $2$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 30-40. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a2/