On sequential estimation of a periodic signal on the background of an autoregressive noise
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 18-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of estimating coefficients of a trigonometric signal in a discrete time from observations with an additive noise described by a stationary autoregressive process with unknown parameters and unknown distribution. A one-step sequential procedure to estimate signal coefficients is proposed, which provides a given root-mean-square accuracy of estimates for any values of the nuisance parameters. An asymptotic formula for the mean duration of the procedure is constructed.
Keywords: sequential estimation, given root-mean-square accuracy, trigonometric regression, stopping time
Mots-clés : autoregressive noise.
@article{VTGU_2015_2_a1,
     author = {T. V. Emelyanova and V. V. Konev},
     title = {On sequential estimation of a periodic signal on the background of an autoregressive noise},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {18--29},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a1/}
}
TY  - JOUR
AU  - T. V. Emelyanova
AU  - V. V. Konev
TI  - On sequential estimation of a periodic signal on the background of an autoregressive noise
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 18
EP  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a1/
LA  - ru
ID  - VTGU_2015_2_a1
ER  - 
%0 Journal Article
%A T. V. Emelyanova
%A V. V. Konev
%T On sequential estimation of a periodic signal on the background of an autoregressive noise
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 18-29
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2015_2_a1/
%G ru
%F VTGU_2015_2_a1
T. V. Emelyanova; V. V. Konev. On sequential estimation of a periodic signal on the background of an autoregressive noise. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 18-29. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a1/

[1] Anderson T. W., The statistical analysis of time series, John Wiley Sons, New York, 2011

[2] Ibragimov I. A., Khasminsky R. Z., Asymptotic estimation theory, Springer-Verlag, New York, 1981

[3] Liptser R., Shiryaev A. N., Statistics of Random Processes, Springer, New York, 2001

[4] Konev V., Pergamenshchikov S., “On guaranteed estimation of the mean of an autoregressive process”, Ann. Statist., 25:5 (1997), 2127–2163 | DOI

[5] Konev V. V., Pergamenshchikov S. M., “Garantirovannoe otsenivanie periodicheskogo signala na fone avtoregressionnykh pomekh s neizvestnymi parametrami”, Problemy peredachi informatsii, 3:4 (1997) (in Russian)

[6] Galtchouk L., Konev V., “On Sequential Least Squares Estimates of Autoregressive Parameters”, Sequential Analysis, 24:4 (2005), 335–364 | DOI

[7] Shiryaev A. N., Probability, Springer, New York, 1996