Geometric modeling of metallic mesh sheet tailoring for an axissymmetric reflector. Part 1
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a parabolic reflector-type antenna, an attachment of a reflecting metallic mesh sheet in a manner ensuring the least possible impact on radiophysical properties of the device is a crucial problem. It is clear that under different selected schemes of tailoring, the specified problem is solved (approximately) in different ways. The scheme of tailoring gives rise to a problem of optimum tailoring. Optimum tailoring can be understood in different ways. There is a well-known approach based on reducing the RMSD as much as possible, (root-mean-square deviation from an ideal surface). We however take different criteria as a basis for optimization — the degree of homogeneity of tension for the metallic mesh in different areas of the reflector (for example, the degree of metallic mesh stretching near the technological center should be a certain fraction of its degree of tension on the periphery). Usually, it is assumed that an acceptable result is achieved if there is a maximum tension at all the points of the reflector within some pre-specified limits, and minimal — also within the desirable limits (own ones). In this paper, we solve a problem of optimal tailoring, and optimality suggests the following conditions: extreme distortion of the relative length should be as close to unity, while the closer to the center of the paraboloid, the "stricter" specified condition must be satisfied.
Mots-clés : parabolic antenna
Keywords: metallic mesh sheet, attachment, stretching, optimum.
@article{VTGU_2015_2_a0,
     author = {M. S. Bukhtyak and A. V. Solomina},
     title = {Geometric modeling of metallic mesh sheet tailoring for an axissymmetric reflector. {Part~1}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--17},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_2_a0/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
AU  - A. V. Solomina
TI  - Geometric modeling of metallic mesh sheet tailoring for an axissymmetric reflector. Part 1
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 5
EP  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_2_a0/
LA  - ru
ID  - VTGU_2015_2_a0
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%A A. V. Solomina
%T Geometric modeling of metallic mesh sheet tailoring for an axissymmetric reflector. Part 1
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 5-17
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2015_2_a0/
%G ru
%F VTGU_2015_2_a0
M. S. Bukhtyak; A. V. Solomina. Geometric modeling of metallic mesh sheet tailoring for an axissymmetric reflector. Part 1. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2015), pp. 5-17. http://geodesic.mathdoc.fr/item/VTGU_2015_2_a0/

[1] Patent RU 2350518 C1, 13.06.2007 (in Russian)

[2] Patent RU 2350519 C1, 13.06.2007 (in Russian)

[3] Rytikova I. V., Razrabotka tekhnologii formirovaniya slozhnokonstruktivnykh izdeliy iz metallicheskikh trikotazhnykh poloten tekhnicheskogo naznacheniya, Dis. ... kand. tekhnich. nauk, Mosk. gos. tekstil'nyy universitet, M., 2005 (in Russian)

[4] Bukhtyak M. S., Samylkina O. A., “O raskroe setepolotna dlya osesimmetrichnogo reflektora”, Vserossiyskaya konferentsiya po matematike i mekhanike, Tezisy dokladov (October 2–4, 2013), Tomsk St. Univ. Publ., Tomsk, 2013, 93 (in Russian)

[5] Butov V. G., Bukhtyak M. S., Ponomarev S. V., “Metodika optimal'nogo raskroya otrazhayushchey poverkhnosti transformiruemykh reflektorov”, Fundamental'nye i prikladnye problemy sovremennoy mekhaniki, Doklady IV Vseros. nauch. konf. (Tomsk, October 5–7, 2005), Tomsk St. Univ. Publ., Tomsk, 2004, 180–181 (in Russian)

[6] Bukhtyak M. S., Nikul'chikov A. V., “Polya na poverkhnostyakh, nakhodyashchikhsya v tochechnom sootvetstvii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 6(26), 56–69 (in Russian)

[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostey, Nauka Publ., M., 1969, 760 pp. (in Russian)

[8] Favar Zh., Kurs lokal'noy differentsial'noy geometrii, IL Publ., M., 1960, 559 pp. (in Russian)

[9] Rashevskiy P. K., Kurs differentsial'noy geometrii, Leningrad, GITTL Publ., M., 1950, 428 pp. (in Russian)

[10] Bukhtyak M. S., Nikul'chikov A. V., “Modelirovanie deformatsii sotovoy paneli”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 2(22), 5–16 (in Russian)

[11] El'sgol'ts L. E., Differentsial'nye uravneniya i variatsionnoe ischislenie, Nauka Publ., M., 1969, 280 pp. (in Russian)

[12] Varden van der B. L., Algebra, Nauka Publ., M., 1976, 648 pp. (in Russian)

[13] Mishina A. P., Proskuryakov I. V., Vysshaya algebra. Lineynaya algebra. Mnogochleny. Obshchaya algebra, Nauka Publ., M., 1966, 300 pp. (in Russian)