Stability of a supersonic couette flow of vibrationally excited diatomic gas
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2015), pp. 47-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the linear theory, we study stability of the Couette flow of vibrationally excited diatomic gas with a parabolic profile of static temperature. The original mathematical model of the gas flow is the system of equations of two-temperature aerodynamics. As a result, it has been shown that when a certain combination of values of the parameters of the test flow (Reynolds number $\mathrm{Re}$, Mach number $\mathrm{M}$, bulk viscosity $\alpha_1$, the degree of vibrational nonequilibrium $\gamma_{\mathrm{vib}}$, and vibrational relaxation time $\tau$), it can be both stable and unstable with respect to small perturbations. For viscous perturbations, the spectra of eigenvalues, the growth increments, and neutral stability curves in the plane $(\mathrm{Re}, \alpha)$ were calculated for the first and second growing modes in the range of numbers $\mathrm{M}=2$$6$ and $\mathrm{Re}=10^4$$10^7$. The range of variation of the critical Reynolds number $\mathrm{Re_{cr}}\approx(2$$5)\cdot10^4$ was found. It is shown that the second mode is most unstable for all levels of excitation. The excitation does not actually change the shape of the region of instability, but its boundaries shift to higher wave numbers with increasing excitation. It can be stated that, in general, the excitation of internal degrees of freedom of the gas molecules reduces the disturbance growth increments and has a stabilizing effect on the flow.
Keywords: hydrodynamic stability, vibrational relaxation, equations of two-temperature aerodynamics, critical Reynolds number.
Mots-clés : unstable viscous excitation modes
@article{VTGU_2015_1_a4,
     author = {I. V. Ershov},
     title = {Stability of a supersonic couette flow of vibrationally excited diatomic gas},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {47--62},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_1_a4/}
}
TY  - JOUR
AU  - I. V. Ershov
TI  - Stability of a supersonic couette flow of vibrationally excited diatomic gas
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 47
EP  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_1_a4/
LA  - ru
ID  - VTGU_2015_1_a4
ER  - 
%0 Journal Article
%A I. V. Ershov
%T Stability of a supersonic couette flow of vibrationally excited diatomic gas
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 47-62
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2015_1_a4/
%G ru
%F VTGU_2015_1_a4
I. V. Ershov. Stability of a supersonic couette flow of vibrationally excited diatomic gas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2015), pp. 47-62. http://geodesic.mathdoc.fr/item/VTGU_2015_1_a4/

[1] Grigor'ev Yu. N., Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reynol'dsa v szhimaemom techenii Kuetta. Vliyanie ob'emnoy vyazkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:5 (2010), 59–67 (in Russian)

[2] Grigor'ev Yu. N., Ershov I. V., “Kriticheskie chisla Reynol'dsa v techenii Kuetta kolebatel'no vozbuzhdennogo dvukhatomnogo gaza. Energeticheskiy podkhod”, Prikladnaya mekhanika i tekhnicheskaya fizika, 53:4 (2012), 57–73 (in Russian)

[3] Gol'dshtik M. A., Shtern V. N., Gidrodinamicheskaya ustoychivost' i turbulentnost', Nauka, Novosibirsk, 1977, 367 pp. (in Russian)

[4] Duck P. W., Erlebacher G., Hussaini M. Y., “On the linear stability of compressible plane Couette flow”, J. of Fluid Mech., 258 (1994), 131–165 | DOI

[5] Romanov V. A., “Ustoychivost' ploskoparallel'nogo techeniya Kuetta”, Doklady AN SSSR, 196:5 (1971), 1049–1051 (in Russian)

[6] Hu S., Zhong X., “Linear stability of viscous supersonic plane Couette flow”, Phys. of Fluids, 10:3 (1998), 709–729 | DOI

[7] Ebrinç A. A., High speed-viscous plane Couette-Poiseuille flow stability, Ph. D. Thesis, Department of Mechanical Engineering. Middle East Technical University, Ankara, Turkey, 2004, 125 pp.

[8] Malik M., Dey J., Alam M., “Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow”, Physical Rev. E, 77:3 (2008), 036322(1)–036322(15) | DOI

[9] Lin' Tszya-tszyao, Teoriya gidrodinamicheskoy ustoychivosti, IL Publ., M., 1958, 195 pp. (in Russian)

[10] Grigor'ev Yu. N., Ershov I. V., “Lineynaya ustoychivost' nevyazkogo sdvigovogo techeniya kolebatel'no vozbuzhdennogo dvukhatomnogo gaza”, Prikladnaya matematika i mekhanika, 45:4 (2011), 581–593 (in Russian)

[11] Grigor'ev Yu. N., Ershov I. V., Ustoychivost' techeniy relaksiruyushchikh molekulyarnykh gazov, SO RAN Publ., Novosibirsk, 2012, 230 pp. (in Russian)

[12] Zhdanov V. M., Alievskiy M. E., Protsessy perenosa i relaksatsii v molekulyarnykh gazakh, Nauka Publ., M., 1989, 336 pp. (in Russian)

[13] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyushchikh gazov, St. Petersburg Univ. Publ., St. Petersburg, 2003, 272 pp. (in Russian)

[14] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods in fluid dynamics, Springer series in Computational Physics, Springer-Verlag, Berlin, 1988, 564 pp.

[15] Trefethen L. N., Spectral methods in Matlab, Soc. for Industr. and Appl. Math., Philadelphia, 2000, 160 pp.

[16] Korn G., Korn T., Spravochnik po matematike, Nauka Publ., M., 1970, 720 pp. (in Russian)

[17] Moler C. B., Stewart G. W., “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10:2 (1973), 241–256 | DOI