Parametric solutions for the Monge–Ampere equation and gas flow with variable entropy
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2015), pp. 105-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-uniform Monge–Ampere equation is considered for an unknown function $Y=Y(x_1,x_2)$ of two independent variables. We set out an algorithm for building analytical solutions depending on a parameter $\alpha$: $x_1=\alpha x_2^2+x_2C_1+C_0$; $C_0$ and $C_1$ are constant. The cases $C_1=0$ and $C_1\ne0$ are studied. Totally, eleven exact partial solutions with arbitrary functions or arbitrary constants were constructed. We also present a gas-dynamical interpretation for one of the solutions, namely, the problem of shock wave propagation in a thermodynamically stable compressible medium with a nonclassic (sign-alternating) convexity in the equation of state. Two examples of gas flowing between movable impermeable pistons are built in the finite form. The first case deals with expansion of the thermodynamically anomalous gas (negative convexity of the state equation): the pistons move in opposite directions; the flow contains a rarefaction shock wave moving from the right piston to the left one; the gas behind the jump front is thermodynamically normal (positive convexity of the state equation); and the process lasts until the rarefaction shock wave front reaches the left piston. In the second case, we consider compression of the thermodynamically normal gas: the pistons move to meet each other, and a compression shock wave propagates in the gas; the gas behind the jump front is thermodynamically anomalous; and the process lasts till the moment the compression shock wave front reaches the left piston. The shock transitions represented are accompanied with emission/absorption of the momentum and energy in the vicinity of the strong jump line.
Keywords: Monge–Ampere equation, thermodynamically anomalous gas, compression shock wave, rarefaction shock wave.
@article{VTGU_2015_1_a10,
     author = {O. N. Shablovskii},
     title = {Parametric solutions for the {Monge{\textendash}Ampere} equation and gas flow with~variable entropy},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {105--118},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_1_a10/}
}
TY  - JOUR
AU  - O. N. Shablovskii
TI  - Parametric solutions for the Monge–Ampere equation and gas flow with variable entropy
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 105
EP  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_1_a10/
LA  - ru
ID  - VTGU_2015_1_a10
ER  - 
%0 Journal Article
%A O. N. Shablovskii
%T Parametric solutions for the Monge–Ampere equation and gas flow with variable entropy
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 105-118
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2015_1_a10/
%G ru
%F VTGU_2015_1_a10
O. N. Shablovskii. Parametric solutions for the Monge–Ampere equation and gas flow with variable entropy. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2015), pp. 105-118. http://geodesic.mathdoc.fr/item/VTGU_2015_1_a10/

[1] Rozhdestvenskiy B. L., Yanenko N. N., Sistemy kvazilineynykh uravneniy i ikh prilozheniya k gazovoy dinamike, Nauka Publ., M., 1978, 688 pp. (in Russian)

[2] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsial'nykh svyazey i ego prilozheniya v gazovoy dinamike, Nauka Publ., Novosibirsk, 1984, 272 pp. (in Russian)

[3] Khabirov S. V., “Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoshch'yu kontaktnoy gruppy uravneniya Monzha–Ampera”, Matematicheskiy sbornik, 181:12 (1990), 1607–1622 (in Russian)

[4] Kushner A. G., “Kontaktnaya linearizatsiya uravneniy Monzha–Ampera i invarianty Laplasa”, Doklady RAN, 422:5 (2008), 1–4 (in Russian)

[5] Zaslavskiy B. I., “O nelineynom vzaimodeystvii sfericheskoy udarnoy volny, voznikshey v rezul'tate vzryva zaglublennogo zaryada, so svobodnoy poverkhnost'yu vody”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1964, no. 4, 57–65 (in Russian)

[6] Sedov L. I., Mekhanika sploshnoy sredy, v. 1, Nauka Publ., M., 1973, 536 pp. (in Russian)

[7] Godunov S. K., Elementy mekhaniki sploshnoy sredy, Nauka Publ., M., 1978, 304 pp. (in Russian)

[8] Zel'dovich Ya. B., Rayzer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy, Nauka Publ., M., 1966, 688 pp. (in Russian)

[9] Borisov A. A., Borisov A. A., Kutateladze S. S., Nakoryakov V. E., “Rarefaction shock wave near the critical liquid-vapour point”, J. Fluid Mech., 126 (1983), 59–73 | DOI

[10] Kanel' G. I., Razorenov S. V., Utkin A. V., Fortov V. E., Udarno-volnovye yavleniya v kondensirovannykh sredakh, Yanus-K Publ., M., 1996, 408 pp. (in Russian)