@article{VTGU_2014_6_a7,
author = {I. V. Ershov},
title = {Energy estimate of critical {Reynolds} numbers in the supersonic {Couette} flow of a vibrationally excited diatomic gas},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {66--79},
year = {2014},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a7/}
}
TY - JOUR AU - I. V. Ershov TI - Energy estimate of critical Reynolds numbers in the supersonic Couette flow of a vibrationally excited diatomic gas JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 66 EP - 79 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a7/ LA - ru ID - VTGU_2014_6_a7 ER -
%0 Journal Article %A I. V. Ershov %T Energy estimate of critical Reynolds numbers in the supersonic Couette flow of a vibrationally excited diatomic gas %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 66-79 %N 6 %U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a7/ %G ru %F VTGU_2014_6_a7
I. V. Ershov. Energy estimate of critical Reynolds numbers in the supersonic Couette flow of a vibrationally excited diatomic gas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 66-79. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a7/
[1] Ershov I. V., “Ustoychivost' techeniya Kuetta kolebatel'no-neravnovesnogo molekulyarnogo gaza. Energeticheskiy podkhod”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 3(25), 76–88 (in Russian)
[2] Gol'dshtik M. A., Shtern V. N., Gidrodinamicheskaya ustoychivost' i turbulentnost', Nauka Publ., Novosibirsk, 1977, 367 pp. (in Russian)
[3] Duck P. W., Erlebacher G., Hussaini M. Y., “On the linear stability of compressible plane Couette flow”, J. of Fluid Mech., 258 (1994), 131–165 | DOI | MR | Zbl
[4] Hu S., Zhong X., “Linear stability of viscous supersonic plane Couette flow”, Phys. of Fluids, 10:3 (1998), 709–729 | DOI | MR | Zbl
[5] Malik M., Dey J., Alam M., “Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow”, Physical Rev. E, 77:3 (2008), 036322(1)–036322(15) | DOI | MR
[6] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, IL Publ., M., 1960, 510 pp. (in Russian) | MR
[7] Zhdanov V. M., Alievskiy M. E., Protsessy perenosa i relaksatsii v molekulyarnykh gazakh, Nauka Publ., M., 1989, 336 pp. (in Russian) | Zbl
[8] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyushchikh gazov, St. Petersburg Univ. Publ., St. Petersburg, 2003, 272 pp. (in Russian)
[9] Grigor'ev Yu. N., Ershov I. V., Ustoychivost' techeniy relaksiruyushchikh molekulyarnykh gazov, Izd-vo SO RAN, Novosibirsk, 2012, 230 pp. (in Russian)
[10] Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reynol'dsa v techenii Kuetta kolebatel'no-neravnovesnogo molekulyarnogo gaza”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2(20), 99–112 (in Russian)
[11] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods in fluid dynamics, Springer series in Computational Physics, Springer-Verlag, Berlin, 1988, 564 pp. | MR | Zbl
[12] Trefethen L. N., Spectral methods in Matlab, Soc. for Industr. and Appl. Math., Philadelphia, 2000, 160 pp. | MR
[13] Korn G., Korn T., Spravochnik po matematike, Nauka Publ., M., 1970, 720 pp. (in Russian) | MR
[14] Moler C. B., Stewart G. W., “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10:2 (1973), 241–256 | DOI | MR | Zbl