Some properties of the set of maps in the pointwise topology
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 55-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses topological properties of spaces of mappings (not necessarily continuous) in the pointwise topology. In particular, it is proved that $|T_1|\leqslant nw(P)\leqslant |T|$, where $P$ is a subset of real functions of a real variable having an at most countable sets of points of discontinuity, $T$ is the union of all sets of discontinuities of functions from $P$, and $T_1$ is the union of all sets of first kind discontinuities of functions from $P$.
Keywords: topology of pointwise convergence, net weight, topological spaces of mappings.
@article{VTGU_2014_6_a5,
     author = {A. A. Fedorov},
     title = {Some properties of the set of maps in the pointwise topology},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {55--58},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a5/}
}
TY  - JOUR
AU  - A. A. Fedorov
TI  - Some properties of the set of maps in the pointwise topology
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 55
EP  - 58
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a5/
LA  - ru
ID  - VTGU_2014_6_a5
ER  - 
%0 Journal Article
%A A. A. Fedorov
%T Some properties of the set of maps in the pointwise topology
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 55-58
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a5/
%G ru
%F VTGU_2014_6_a5
A. A. Fedorov. Some properties of the set of maps in the pointwise topology. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 55-58. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a5/

[1] Engel'king R., Obshchaya topologiya, Mir Publ., M., 1986 (in Russian) | MR

[2] Asanov M. O., “O prostranstve nepreryvnykh otobrazheniy”, Izvestiya vuzov. Matematika, 1980, no. 4, 6–10 (in Russian)

[3] Arkhangel'skiy A. V., Topologicheskie prostranstva funktsiy, Moskow St. Univ. Publ., M., 1989, 25 (in Russian) | MR

[4] Kuratovskiy K., Mostovskiy A., Teoriya mnozhestv, Mir Publ., M., 1970, 416 pp. (in Russian) | MR