Contact metric structures on odd-dimensional unit spheres
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 46-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work, the contact structure on the $3$-dimensional unit sphere $S^3\subset\mathrm{R}^4=\mathrm{C}^2$ which arises in Hopf's map $S^1\to S^3\to S^2$ is considered. The group $S^1$ acts on the sphere $S^3\subset\mathrm{R}^4=\mathrm{C}^2$ by the rule $(z_1,z_2)e^{i\varphi}=(z_1e^{i\varphi}, z_2e^{i\varphi})$. The field of speeds of this action defines a characteristic vector field $\xi$ and 2-dimensional subspaces $E_x$ orthogonal to the vector field $\xi$ form a contact structure. The contact form $\eta$ is defined by the equality $\eta(X)=(\xi,X)$. These constructions are generalized in the case of considering the $7$-dimensional unit sphere $S^7$. On the $3$-dimensional unit sphere $S^3$, expressions of the contact metric structure in local coordinates of a stereographic projection are received, the corresponding characteristics are determined: contact form $\eta$, external differential of the contact form $d\eta$, characteristic vector field $\xi$, contact distribution $\mathrm{E}$, and affinor $\varphi$. A contact metric structure on the $7$-dimensional unit sphere is constructed. For the sphere, main characteristics are determined: contact form $\eta$, external differential of the contact form $d\eta$, characteristic vector field $\xi$, contact distribution $\mathrm{E}$, and affinor $\varphi$ are determined. The relation between the contact structure on the $7$-dimensional unit sphere $S^7$ and almost complex structure $\mathrm{J}$ established by means of a projection $\pi$: $S^7\to\mathbf{CP}^3$ on the $3$-dimensional projective.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
contact structures
Keywords: contact metric structures, $3$-dimensional sphere, $7$-dimensional sphere, Riemannian metrics.
                    
                  
                
                
                Keywords: contact metric structures, $3$-dimensional sphere, $7$-dimensional sphere, Riemannian metrics.
@article{VTGU_2014_6_a4,
     author = {Y. V. Slavolyubova},
     title = {Contact metric structures on odd-dimensional unit spheres},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {46--54},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a4/}
}
                      
                      
                    TY - JOUR AU - Y. V. Slavolyubova TI - Contact metric structures on odd-dimensional unit spheres JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 46 EP - 54 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a4/ LA - ru ID - VTGU_2014_6_a4 ER -
Y. V. Slavolyubova. Contact metric structures on odd-dimensional unit spheres. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 46-54. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a4/