Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 35-45
Voir la notice de l'article provenant de la source Math-Net.Ru
An irreducible $\mathrm{SO(3)}$-structure can be defined by means of a symmetric tensor field $T$ of type
$(0,3)$ on a manifold $M$.
Definition 1. An $\mathrm{SO(3)}$ structure on a $5$-dimensional Riemannian manifold $(M, g)$ is a structure defined by means of a rank $3$ tensor field $T$ for which the associated linear map
$X\to T_X\in End(TM)$, $X\in TM$, satisfies the following condition:symmetricity, i. e. $g(X,T_Y Z) = g(Z,T_Y X) = g(X,T_Z Y)$,
the trace $tr(T_X) = 0$,
for any vector field $X \in TM$,
$$
T_X^2X=g(X,X)X.
$$
In any tangent space, it is possible to choose an adapted basis $\{e_1,e_2,e_3,e_4,e_5\}$ in which metrics $g$ and tensor $T$ have the canonical form $g_{ij}=\delta_{ij}$ and
$$
\begin{gathered}
T=\frac12e^1\left(6(e^2)^2+6(e^4)^2-2(e^1)^2-3(e^2)^2-3(e^5)^2\right)+\\
+\frac{3\sqrt3}2e^4\left((e^5)^2-(e^3)^2\right)+3\sqrt3e^2e^3e^5.
\end{gathered}
$$ Her, $\{e_1,e_2,e_3,e_4,e_5\}$ is the dual coframe. Polarising the expression yields components of $T$:
$$
\begin{gathered}
t_{111}=-1,\quad t_{122}=1, \quad t_{144}=1, \quad t_{133}=-\frac12,\quad t_{155}=-\frac12,\\
t_{433}=-\frac{\sqrt3}2,\quad t_{455}=\frac{\sqrt3}2,\quad t_{235}=\frac{\sqrt3}2.
\end{gathered}
$$ Thus, an irreducible $\mathrm{SO(3)}$-structure on a manifold is a Riemannian structure $g$ and a tensor
field $T$ possessing properties 1–3.
Theorem 1. The stabilizer of $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$ embedded into $\mathrm{O(5)}$.
Since the stabilizer $T_{ijk}$ is an irreducible $\mathrm{SO(3)}$, its orbit under the action of $\mathrm{O(5)}$ is a 7-dimension homogeneous space $\mathrm{O(5)/SO(3)}$.
A homogeneous Berger space $\mathrm{SO(5)/SO(3)}$ is topologically equivalent to an $\mathrm{S^3}$ fiber
bundle over $\mathrm{S^4}$.
With respect to the biinvariant scalar product $\langle A,B\rangle=-\frac1{10}tr(AB)$ on $\mathrm{SO(5)}$, a decomposition
of the Lie algebra $\mathrm{so(5)}$ into a direct sum $\mathrm{so(5)} = \mathrm{so(3)} + V$ of the Lie algebra and $\mathrm{ad(SO(3))}$ of an invariant space $V$ has been obtained.
Examples of deformations of the structural tensor $T$ by geodesics $g_t$ of the homogeneous space
$\mathrm{SO(5)/SO(3)}$ are considered, the covariant divergence of the obtained structure tensor is calculated, and the property of nearly integrability is investigated.
Keywords:
special $\mathrm{SO(3)}$ structure, homogeneous Berger space
Mots-clés : Lie group.
Mots-clés : Lie group.
@article{VTGU_2014_6_a3,
author = {A. G. Sedykh and A. S. Berezina},
title = {Homogeneous {Berger} space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension {Lie} groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {35--45},
publisher = {mathdoc},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a3/}
}
TY - JOUR
AU - A. G. Sedykh
AU - A. S. Berezina
TI - Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY - 2014
SP - 35
EP - 45
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a3/
LA - ru
ID - VTGU_2014_6_a3
ER -
%0 Journal Article
%A A. G. Sedykh
%A A. S. Berezina
%T Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 35-45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a3/
%G ru
%F VTGU_2014_6_a3
A. G. Sedykh; A. S. Berezina. Homogeneous Berger space and deformations of the $\mathrm{SO(3)}$-structure by its geodesic on $5$-dimension Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 35-45. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a3/