On two approaches to modelling the inflow boundary
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 94-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two approaches to modeling inflow boundary through solving one-dimensional equations of gas dynamics by means of boundary conditions and right-hand sides in the equations involving the Dirac delta function are discussed. Comparisons of numerical solutions of one-dimensional stationary equations of gas dynamics with the exact ones, as well as between numerical solutions of unsteady gas dynamics equations are performed for two approaches. Three kinds of boundary conditions are considered, namely, a constant inflow, pressure-dependent inflow, and inflow varying in time. It is shown that the numerical solutions obtained based on the finite-difference scheme of first order accuracy by the two considered approaches converge to each other with the mesh refinement. The numerical solution for the steady state problem coincides with the analytical one if the pressure at the boundary cell face is set equal to the pressure in the center of the boundary cell.
Keywords: inflow boundary, numerical modeling, gas-dynamics, Dirac delta-function.
@article{VTGU_2014_6_a10,
     author = {L. L. Minkov and E. R. Shrager and A. E. Kiryushkin},
     title = {On two approaches to modelling the inflow boundary},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {94--102},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a10/}
}
TY  - JOUR
AU  - L. L. Minkov
AU  - E. R. Shrager
AU  - A. E. Kiryushkin
TI  - On two approaches to modelling the inflow boundary
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 94
EP  - 102
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a10/
LA  - ru
ID  - VTGU_2014_6_a10
ER  - 
%0 Journal Article
%A L. L. Minkov
%A E. R. Shrager
%A A. E. Kiryushkin
%T On two approaches to modelling the inflow boundary
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 94-102
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a10/
%G ru
%F VTGU_2014_6_a10
L. L. Minkov; E. R. Shrager; A. E. Kiryushkin. On two approaches to modelling the inflow boundary. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 94-102. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a10/

[1] Rayzberg B. A., Erokhin B. G., Samsonov K. P., Osnovy teorii rabochikh protsessov v raketnykh sistemakh na tverdom toplive, Mashinostroenie Publ., M., 1972, 383 pp. (in Russian)

[2] Erokhin B. T., Lipanov A. M., Nestatsionarnye i kvazistatsionarnye rezhimy raboty RDTT, Mashinostroenie Publ., M., 1977, 200 pp. (in Russian)

[3] Rychkov A. D., Matematicheskoe modelirovanie gazodinamicheskikh protsessov v kanalakh i soplakh, Nauka Publ., Novosibirsk, 1988, 222 pp. (in Russian)

[4] Godunov S. K., Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki, Nauka Publ., M., 1976, 400 pp. (in Russian) | MR | Zbl

[5] Erokhin B. T., Teoriya vnutrikamernykh protsessov i proektirovanie RDTT, Uchebnik dlya vysshikh uchebnykh zavedeniy, Mashinostroenie Publ., M., 1991, 560 pp. (in Russian)

[6] Butkovskiy A. G., Kharakteristiki sistem s raspredelennymi parametrami, Nauka Publ., M., 1979, 224 pp. (in Russian) | MR

[7] Van Leer B., “Flux-vector splitting for the euler equations”, Lecture Notes in Physics, 170, 1982, 507–512 | DOI