On the existence of $G_2$ class structures on a strictly nearly K\"ahler six-dimensional manifold
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 19-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The strictly nearly Kähler 6-manifold $(M, g, J, \omega)$ is researched. Since the class $G_2$ is the orthogonal complement to the class of nearly Kähler structures in the space of all classes of almost Hermitian structures, no strictly nearly Kähler structure can be simultaneously an almost Hermitian structure of the $G_2$ class. Can this class contain other structures, «close» to a strictly nearly Kähler structure, in the case of dimension six? There exist three families of almost Hermitian structures linked with the given structure $(g, J, \omega)$ on $M$, namely, $H_g$, $H_J$, and $H_\omega$ families of almost Hermitian structures with the same metric $g$, or the same almost complex structure $J$, or the same form $\omega$, respectively. The problem whether a structure of the $G_2$ class can be present among structures belonging to those families is studied. It is proved that $H_\omega$ and $H_J$ do not contain structures of the $G_2$ class. By an example of left-invariant structures on $S^3\times S^3=SU(2)\times SU(2)$, it is proved that this is nevertheless possible for structures from $H_g$.
Keywords: Gray–Hervella classification, strictly nearly Kähler manifolds.
@article{VTGU_2014_6_a1,
     author = {N. A. Daurtseva},
     title = {On the existence of $G_2$ class structures on a strictly nearly {K\"ahler} six-dimensional manifold},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {19--24},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - On the existence of $G_2$ class structures on a strictly nearly K\"ahler six-dimensional manifold
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 19
EP  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/
LA  - ru
ID  - VTGU_2014_6_a1
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T On the existence of $G_2$ class structures on a strictly nearly K\"ahler six-dimensional manifold
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 19-24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/
%G ru
%F VTGU_2014_6_a1
N. A. Daurtseva. On the existence of $G_2$ class structures on a strictly nearly K\"ahler six-dimensional manifold. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 19-24. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/