@article{VTGU_2014_6_a1,
author = {N. A. Daurtseva},
title = {On the existence of $G_2$ class structures on a strictly nearly {K\"ahler} six-dimensional manifold},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {19--24},
year = {2014},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/}
}
TY - JOUR AU - N. A. Daurtseva TI - On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 19 EP - 24 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/ LA - ru ID - VTGU_2014_6_a1 ER -
%0 Journal Article %A N. A. Daurtseva %T On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 19-24 %N 6 %U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/ %G ru %F VTGU_2014_6_a1
N. A. Daurtseva. On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 19-24. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/
[1] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl
[2] Gray A., “Weak holonomy groups”, Math. Z., 125 (1971), 290–300 | DOI | MR
[3] Verbitsky M., “An intrinsic volume functional on almost complex 6-manifolds and nearly Kähler geometry”, Pacific J. of Math., 235:2 (2008), 323–344 | DOI | MR | Zbl
[4] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31 (2003), 69–146 (in Russian) | MR
[5] Lejmi M., “Strictly Nearly Kähler 6-manifolds are not compatible with symmetric forms”, Comp. Rend. Math. Acad. Sci. Paris. Ser. I, 343 (2006), 759–762 | DOI | MR | Zbl
[6] Daurtseva N. A., “Ob integriruemosti pochti kompleksnykh struktur na strogo priblizhenno kelerovom 6-mnogoobrazii”, SMZh, 55:1 (2014), 61–65 (in Russian) | MR | Zbl
[7] Hervella L. M., Vidal E., “Nouvelles geometries pseudo-kählériennes $\mathbf{G}_1$ et $\mathbf{G}_2$”, C.R. Acad. Sci. Paris, 283 (1976), 115–118 | MR | Zbl
[8] Kobotis A., Xenos Ph. J., “On $\mathbf{G}_2$-manifolds”, Ann. Math. B, 1:1 (1994), 27–42 | MR | Zbl
[9] Butruille J.-B., “Classification des variétés approximativement kähleriennes homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl
[10] Calabi E., Eckmann B., “A class of compact complex manifolds which are not algebraic”, Ann. Math., 58 (1935), 494–500 | DOI | MR