On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 19-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The strictly nearly Kähler 6-manifold $(M, g, J, \omega)$ is researched. Since the class $G_2$ is the orthogonal complement to the class of nearly Kähler structures in the space of all classes of almost Hermitian structures, no strictly nearly Kähler structure can be simultaneously an almost Hermitian structure of the $G_2$ class. Can this class contain other structures, «close» to a strictly nearly Kähler structure, in the case of dimension six? There exist three families of almost Hermitian structures linked with the given structure $(g, J, \omega)$ on $M$, namely, $H_g$, $H_J$, and $H_\omega$ families of almost Hermitian structures with the same metric $g$, or the same almost complex structure $J$, or the same form $\omega$, respectively. The problem whether a structure of the $G_2$ class can be present among structures belonging to those families is studied. It is proved that $H_\omega$ and $H_J$ do not contain structures of the $G_2$ class. By an example of left-invariant structures on $S^3\times S^3=SU(2)\times SU(2)$, it is proved that this is nevertheless possible for structures from $H_g$.
Keywords: Gray–Hervella classification, strictly nearly Kähler manifolds.
@article{VTGU_2014_6_a1,
     author = {N. A. Daurtseva},
     title = {On the existence of $G_2$ class structures on a strictly nearly {K\"ahler} six-dimensional manifold},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {19--24},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 19
EP  - 24
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/
LA  - ru
ID  - VTGU_2014_6_a1
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 19-24
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/
%G ru
%F VTGU_2014_6_a1
N. A. Daurtseva. On the existence of $G_2$ class structures on a strictly nearly Kähler six-dimensional manifold. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2014), pp. 19-24. http://geodesic.mathdoc.fr/item/VTGU_2014_6_a1/

[1] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl

[2] Gray A., “Weak holonomy groups”, Math. Z., 125 (1971), 290–300 | DOI | MR

[3] Verbitsky M., “An intrinsic volume functional on almost complex 6-manifolds and nearly Kähler geometry”, Pacific J. of Math., 235:2 (2008), 323–344 | DOI | MR | Zbl

[4] Smolentsev N. K., “Prostranstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31 (2003), 69–146 (in Russian) | MR

[5] Lejmi M., “Strictly Nearly Kähler 6-manifolds are not compatible with symmetric forms”, Comp. Rend. Math. Acad. Sci. Paris. Ser. I, 343 (2006), 759–762 | DOI | MR | Zbl

[6] Daurtseva N. A., “Ob integriruemosti pochti kompleksnykh struktur na strogo priblizhenno kelerovom 6-mnogoobrazii”, SMZh, 55:1 (2014), 61–65 (in Russian) | MR | Zbl

[7] Hervella L. M., Vidal E., “Nouvelles geometries pseudo-kählériennes $\mathbf{G}_1$ et $\mathbf{G}_2$”, C.R. Acad. Sci. Paris, 283 (1976), 115–118 | MR | Zbl

[8] Kobotis A., Xenos Ph. J., “On $\mathbf{G}_2$-manifolds”, Ann. Math. B, 1:1 (1994), 27–42 | MR | Zbl

[9] Butruille J.-B., “Classification des variétés approximativement kähleriennes homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl

[10] Calabi E., Eckmann B., “A class of compact complex manifolds which are not algebraic”, Ann. Math., 58 (1935), 494–500 | DOI | MR