On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 63-68
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we consider a topological space $S_A$ which is a modification of the Sorgenfrey line $S$ and is defined as follows: if a point $x\in A\subset S$, then the base of neighborhoods of the point $x$ is a family of intervals $\{[a,b)\colon a,b\in\mathbb R,\ a$. If $x\in S\setminus A$, then the base of neighborhoods of $x$ is $\{(c,d]\colon c,d\in\mathbb R,\ c$. It is proved that for a countable subset $A\subset\mathbb R$ the closure of which in the Euclidean topology is a countable space, the space $S_A$ is homeomorphic to the space $S$. In addition, it was found that the space $S_A$ is homeomorphic to the space$S$ for any closed subset $A\subset\mathbb R$. Similar problems were considered by V. A. Chatyrko and Y. Hattori in [4], where the “arrow” topology on the set $A$ was replaced by the Euclidean topology. In this paper, we consider two special cases: $A$ is a closed subset of the line in the Euclidean topology and the closure of the set $A$ in the Euclidean topology of the line is countable. 
The following results were obtained: 
Let a set $A$ be closed in $\mathbb R$. Then the space $S_A$ is homeomorphic to the space $S$. 
Let a countable set $A\subset\mathbb R$ be such that its closure $\overline A$ is countable relatively to $\mathbb R$. Then $S_A$ is homeomorphic to $S$. 
Let $A$ be a countable closed subset in $S$. Then $S_A$ is homeomorphic to $S$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Sorgenfrey line, derivative set, homeomorphism, ordinal.
                    
                  
                
                
                @article{VTGU_2014_5_a5,
     author = {E. S. Sukhacheva and T. E. Khmyleva},
     title = {On some linearly ordered topological spaces homeomorphic to the {Sorgenfrey} line},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--68},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a5/}
}
                      
                      
                    TY - JOUR AU - E. S. Sukhacheva AU - T. E. Khmyleva TI - On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 63 EP - 68 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a5/ LA - ru ID - VTGU_2014_5_a5 ER -
%0 Journal Article %A E. S. Sukhacheva %A T. E. Khmyleva %T On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 63-68 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a5/ %G ru %F VTGU_2014_5_a5
E. S. Sukhacheva; T. E. Khmyleva. On some linearly ordered topological spaces homeomorphic to the Sorgenfrey line. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 63-68. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a5/
