Minimax estimation of the Gaussian parametric regression
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 40-47
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers the problem of estimating a $d\ge2$ dimensional mean vector of a multivariate normal distribution under quadratic loss. Let the observations be described by the equation
\begin{equation}
Y=\theta+\sigma\xi,
\end{equation}
where $\theta$ is a $d$-dimension vector of unknown parameters from some bounded set $\Theta\subset\mathbb R^d$, $\xi$ is a Gaussian random vector with zero mean and identity covariance matrix $I_d$, i.e. $Law(\xi)=\mathrm N_d(0,I_d)$ and $\sigma$ is a known positive number. The problem is to construct a minimax estimator of the vector $\theta$ from observations $Y$. As a measure of the accuracy of estimator $\hat\theta$ we select the quadratic risk defined as
$$
R(\theta,\hat\theta):=\boldsymbol E_\theta|\theta-\hat\theta|^2,\qquad|x|^2=\sum^d_{j=1}x^2_j,
$$
where $\boldsymbol E_\theta$ is the expectation with respect to measure $\boldsymbol P_\theta$.
We propose a modification of the James–Stein procedure of the form
$$
\theta^*_+=\left(a-\frac c{|Y|}\right)_+Y,
$$
where $c>0$ is a special constant and $a_+=\max(a,0)$ is a positive part of $a$. This estimate allows one to derive an explicit upper bound for the quadratic risk and has a significantly smaller risk than the usual maximum likelihood estimator and the estimator
$$
\theta^*=\left(1-\frac c{|Y|}\right)Y
$$
for the dimensions $d\ge2$. We establish that the proposed procedure $\hat\theta_+$ is minimax estimator for the vector $\theta$.
A numerical comparison of the quadratic risks of the considered procedures is given. In conclusion it is shown that the proposed minimax estimator $\hat\theta_+$ is the best estimator in the mean square sense.
Keywords:
parametric regression, improved estimation, James–Stein procedure, mean squared risk, minimax estimator.
@article{VTGU_2014_5_a3,
author = {V. A. Pchelintsev and E. A. Pchelintsev},
title = {Minimax estimation of the {Gaussian} parametric regression},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {40--47},
publisher = {mathdoc},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/}
}
TY - JOUR AU - V. A. Pchelintsev AU - E. A. Pchelintsev TI - Minimax estimation of the Gaussian parametric regression JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 40 EP - 47 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/ LA - ru ID - VTGU_2014_5_a3 ER -
%0 Journal Article %A V. A. Pchelintsev %A E. A. Pchelintsev %T Minimax estimation of the Gaussian parametric regression %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 40-47 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/ %G ru %F VTGU_2014_5_a3
V. A. Pchelintsev; E. A. Pchelintsev. Minimax estimation of the Gaussian parametric regression. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 40-47. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/