Minimax estimation of the Gaussian parametric regression
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of estimating a $d\ge2$ dimensional mean vector of a multivariate normal distribution under quadratic loss. Let the observations be described by the equation \begin{equation} Y=\theta+\sigma\xi, \end{equation} where $\theta$ is a $d$-dimension vector of unknown parameters from some bounded set $\Theta\subset\mathbb R^d$, $\xi$ is a Gaussian random vector with zero mean and identity covariance matrix $I_d$, i.e. $Law(\xi)=\mathrm N_d(0,I_d)$ and $\sigma$ is a known positive number. The problem is to construct a minimax estimator of the vector $\theta$ from observations $Y$. As a measure of the accuracy of estimator $\hat\theta$ we select the quadratic risk defined as $$ R(\theta,\hat\theta):=\boldsymbol E_\theta|\theta-\hat\theta|^2,\qquad|x|^2=\sum^d_{j=1}x^2_j, $$ where $\boldsymbol E_\theta$ is the expectation with respect to measure $\boldsymbol P_\theta$. We propose a modification of the James–Stein procedure of the form $$ \theta^*_+=\left(a-\frac c{|Y|}\right)_+Y, $$ where $c>0$ is a special constant and $a_+=\max(a,0)$ is a positive part of $a$. This estimate allows one to derive an explicit upper bound for the quadratic risk and has a significantly smaller risk than the usual maximum likelihood estimator and the estimator $$ \theta^*=\left(1-\frac c{|Y|}\right)Y $$ for the dimensions $d\ge2$. We establish that the proposed procedure $\hat\theta_+$ is minimax estimator for the vector $\theta$. A numerical comparison of the quadratic risks of the considered procedures is given. In conclusion it is shown that the proposed minimax estimator $\hat\theta_+$ is the best estimator in the mean square sense.
Keywords: parametric regression, improved estimation, James–Stein procedure, mean squared risk, minimax estimator.
@article{VTGU_2014_5_a3,
     author = {V. A. Pchelintsev and E. A. Pchelintsev},
     title = {Minimax estimation of the {Gaussian} parametric regression},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {40--47},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/}
}
TY  - JOUR
AU  - V. A. Pchelintsev
AU  - E. A. Pchelintsev
TI  - Minimax estimation of the Gaussian parametric regression
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 40
EP  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/
LA  - ru
ID  - VTGU_2014_5_a3
ER  - 
%0 Journal Article
%A V. A. Pchelintsev
%A E. A. Pchelintsev
%T Minimax estimation of the Gaussian parametric regression
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 40-47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/
%G ru
%F VTGU_2014_5_a3
V. A. Pchelintsev; E. A. Pchelintsev. Minimax estimation of the Gaussian parametric regression. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 40-47. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a3/