Modeling of axisymmetric viscous flows of incompressible fluid by the boundary element method
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 114-122
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, the derivation of the fundamental velocity and traction tensor components is presented for Stokes equations in the cylindrical coordinate system for axisymmetric viscous flows. The derivation is based on a three-dimensional singular solution in Cartesian coordinates. Using the presented formulas, the boundary integral equations are constructed in accordance with the potential theory conception. A simple numerical solution algorithm that is an implementation of principles of the indirect boundary element method is proposed. Reliability of the results is verified by solving a test problem the role of which is played by the problem about a flow in a cylindrical tube (the Poiseuille flow) with mixed boundary conditions. The developed method of solving boundary problems for Stokes equations can be used for modeling creeping flows of a viscous fluid with a free surface.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
viscous fluid
Keywords: boundary element method, fundamental solutions, axisymmetric flow.
                    
                  
                
                
                Keywords: boundary element method, fundamental solutions, axisymmetric flow.
@article{VTGU_2014_5_a11,
     author = {V. A. Yakutenok and M. A. Ponomareva and A. E. Kuznetsova},
     title = {Modeling of axisymmetric viscous flows of incompressible fluid by the boundary element method},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {114--122},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a11/}
}
                      
                      
                    TY - JOUR AU - V. A. Yakutenok AU - M. A. Ponomareva AU - A. E. Kuznetsova TI - Modeling of axisymmetric viscous flows of incompressible fluid by the boundary element method JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 114 EP - 122 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a11/ LA - ru ID - VTGU_2014_5_a11 ER -
%0 Journal Article %A V. A. Yakutenok %A M. A. Ponomareva %A A. E. Kuznetsova %T Modeling of axisymmetric viscous flows of incompressible fluid by the boundary element method %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 114-122 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a11/ %G ru %F VTGU_2014_5_a11
V. A. Yakutenok; M. A. Ponomareva; A. E. Kuznetsova. Modeling of axisymmetric viscous flows of incompressible fluid by the boundary element method. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 114-122. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a11/
