Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 104-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the phenomenon of the thermal bar in Kamloops Lake (Canada) is studied with a nonhydrostatic mathematical model. A thermal bar is a narrow zone in a lake in temperate latitudes where maximum-density waters sink from the surface to the bottom. Two different turbulence models are compared: the algebraic model of Holland P. R. et al. [1] and the two-equation $k-\omega$ model of Wilcox D. C. [2]. The two-parameter model of turbulence developed by D. C. Wilcox consists of equations for turbulence kinetic energy ($k$) and specific dissipation rate ($\omega$). The mathematical model which includes the Coriolis force due to the Earth's rotation, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. The Chen–Millero equation [8], adopted by UNESCO, was taken as the equation of state. The formulated problem is solved by the finite volume method. The numerical algorithm for finding the flow and temperature fields is based on the Crank–Nicholson difference scheme. The convective terms in the equations are approximated by a second-order upstream QUICK scheme [10]. To calculate the velocity and pressure fields, the SIMPLED procedure for buoyant flows [11], which is a modification of the well-known Patankar's SIMPLE method [9], has been developed. The systems of grid equations at each time step are solved by the under-relaxation method or N. I. Buleev's explicit method [12]. The turbulence models were applied to predict the evolution of the spring thermal bar in Kamloops Lake. The numerical experiments have shown that the application of the $k-\omega$ turbulence model leads to new effects in the thermal bar evolution.
Keywords: thermal bar, temperature of maximum density, numerical experiment, Kamloops Lake.
Mots-clés : Boussinesq approximation
@article{VTGU_2014_5_a10,
     author = {B. O. Tsydenov and A. V. Starchenko},
     title = {Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {104--113},
     year = {2014},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/}
}
TY  - JOUR
AU  - B. O. Tsydenov
AU  - A. V. Starchenko
TI  - Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 104
EP  - 113
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/
LA  - ru
ID  - VTGU_2014_5_a10
ER  - 
%0 Journal Article
%A B. O. Tsydenov
%A A. V. Starchenko
%T Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 104-113
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/
%G ru
%F VTGU_2014_5_a10
B. O. Tsydenov; A. V. Starchenko. Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 104-113. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/

[1] Ovchinnikova T. E., Bocharov O. B., “Sezonnoe vliyanie vod pritoka na vodoobmen v glubokom ozere v usloviyakh bol'shikh uklonov dna”, Vychisl. tekhnologii, 12:6 (2007), 59–72 (in Russian)

[2] Killworth P. D., Carmack E. C., Weiss R. F., Matear R., “Modeling deep-water renewal in Lake Baikal”, Limnol. Oceanogr., 41:7 (1996), 1521–1538 | DOI

[3] Mellor G. L., Yamada S., “Development of a turbulence closure model for geophysical fluid problems”, Rev. Geophys. Space Phys., 20:4 (1982), 851–875 | DOI

[4] Rodi W., “Examples of calculation methods for flow and mixing in stratified fluids”, J. Geophys. Res., 92:C5 (1987), 5305–5328 | DOI

[5] Wilcox D. C., “Reassessment of the scale-determining equation for advanced turbulence models”, AIAA Journal, 26:11 (1988), 1299–1310 | DOI | MR | Zbl

[6] Umlauf L., Burchard H., Hutter K., “Extending the $k-\omega$ turbulence model towards oceanic applications”, Ocean Modelling, 5 (2003), 195–218 | DOI

[7] Holland P. R., Kay A., Botte V., “Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake”, J. Mar. Sys., 43:1–2 (2003), 61–81 | DOI

[8] Chen C. T., Millero F. G., “Precise thermodynamic properties for natural waters covering only limnologies range”, Limnol. Oceanogr., 31:3 (1986), 657–662 | DOI

[9] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat Publ., Moscow, 1984, 152 pp. (in Russian)

[10] Leonard B., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comput. Meth. Appl. Mech. Eng., 19:1 (1979), 59–98 | DOI | Zbl

[11] Tsydenov B. O., Starchenko A. V., “Chislennaya model' vzaimodeystviya sistem “reka-ozero” na primere vesennego termobara v ozere Kamlups”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 5(25), 102–115 (in Russian)

[12] Buleev N. I., “Metod nepolnoy faktorizatsii dlya resheniya dvumernykh i trekhmernykh raznostnykh uravneniy tipa diffuzii”, Zhurn. vychisl. matem. i matem. fiz., 10:4 (1970), 1042–1044 (in Russian) | Zbl

[13] Tsydenov B. O., Starchenko A. V., “Chislennoe modelirovanie effekta termobara v ozere Baykal v period vesenne-letnego progrevaniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 120–129 (in Russian)

[14] Carmack E. C., Gray C. B. J., Pharo C. H., Daley R. J., “Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia”, Limnol. Oceanogr., 24:4 (1979), 634–644 | DOI