Mots-clés : Boussinesq approximation
@article{VTGU_2014_5_a10,
author = {B. O. Tsydenov and A. V. Starchenko},
title = {Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {104--113},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/}
}
TY - JOUR AU - B. O. Tsydenov AU - A. V. Starchenko TI - Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2014 SP - 104 EP - 113 IS - 5 UR - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/ LA - ru ID - VTGU_2014_5_a10 ER -
%0 Journal Article %A B. O. Tsydenov %A A. V. Starchenko %T Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2014 %P 104-113 %N 5 %U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/ %G ru %F VTGU_2014_5_a10
B. O. Tsydenov; A. V. Starchenko. Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 104-113. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a10/
[1] Ovchinnikova T. E., Bocharov O. B., “Sezonnoe vliyanie vod pritoka na vodoobmen v glubokom ozere v usloviyakh bol'shikh uklonov dna”, Vychisl. tekhnologii, 12:6 (2007), 59–72 (in Russian)
[2] Killworth P. D., Carmack E. C., Weiss R. F., Matear R., “Modeling deep-water renewal in Lake Baikal”, Limnol. Oceanogr., 41:7 (1996), 1521–1538 | DOI
[3] Mellor G. L., Yamada S., “Development of a turbulence closure model for geophysical fluid problems”, Rev. Geophys. Space Phys., 20:4 (1982), 851–875 | DOI
[4] Rodi W., “Examples of calculation methods for flow and mixing in stratified fluids”, J. Geophys. Res., 92:C5 (1987), 5305–5328 | DOI
[5] Wilcox D. C., “Reassessment of the scale-determining equation for advanced turbulence models”, AIAA Journal, 26:11 (1988), 1299–1310 | DOI | MR | Zbl
[6] Umlauf L., Burchard H., Hutter K., “Extending the $k-\omega$ turbulence model towards oceanic applications”, Ocean Modelling, 5 (2003), 195–218 | DOI
[7] Holland P. R., Kay A., Botte V., “Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake”, J. Mar. Sys., 43:1–2 (2003), 61–81 | DOI
[8] Chen C. T., Millero F. G., “Precise thermodynamic properties for natural waters covering only limnologies range”, Limnol. Oceanogr., 31:3 (1986), 657–662 | DOI
[9] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat Publ., Moscow, 1984, 152 pp. (in Russian)
[10] Leonard B., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comput. Meth. Appl. Mech. Eng., 19:1 (1979), 59–98 | DOI | Zbl
[11] Tsydenov B. O., Starchenko A. V., “Chislennaya model' vzaimodeystviya sistem “reka-ozero” na primere vesennego termobara v ozere Kamlups”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 5(25), 102–115 (in Russian)
[12] Buleev N. I., “Metod nepolnoy faktorizatsii dlya resheniya dvumernykh i trekhmernykh raznostnykh uravneniy tipa diffuzii”, Zhurn. vychisl. matem. i matem. fiz., 10:4 (1970), 1042–1044 (in Russian) | Zbl
[13] Tsydenov B. O., Starchenko A. V., “Chislennoe modelirovanie effekta termobara v ozere Baykal v period vesenne-letnego progrevaniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 120–129 (in Russian)
[14] Carmack E. C., Gray C. B. J., Pharo C. H., Daley R. J., “Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia”, Limnol. Oceanogr., 24:4 (1979), 634–644 | DOI