Correctness of Abelian torsion-free groups and determinability of Abelian groups by their subgroups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 16-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An Abelian group $A$ is called correct if for any Abelian group $B$ isomorphisms $A\cong B'$ and $B\cong A'$, where $A'$ and $B'$ are subgroups of the groups $A$ and $B$, respectively, imply the isomorphism $A\cong B$. We say that a group $A$ is determined by its subgroups (its proper subgroups) if for any group $B$ the existence of a bijection between the sets of all subgroups (all proper subgroups) of groups $A$ and $B$ such that corresponding subgroups are isomorphic implies $A\cong B$. In this paper, connections between the correctness of Abelian groups and their determinability by their subgroups (their proper subgroups) are established. Certain criteria of determinability of divisible torsion-free groups and completely decomposable groups by their subgroups and their proper subgroups, as well as a criterion of correctness of such groups, are obtained.
Keywords: almost isomorphism, correctness of Abelian groups, determinability of Abelian groups by their subgroups (their proper subgroups).
Mots-clés : $s$-isomorphism, $t$-isomorphism
@article{VTGU_2014_5_a1,
     author = {S. Ya. Grinshpon and A. K. Mordovskoi},
     title = {Correctness of {Abelian} torsion-free groups and determinability of {Abelian} groups by their subgroups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--29},
     year = {2014},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_5_a1/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - A. K. Mordovskoi
TI  - Correctness of Abelian torsion-free groups and determinability of Abelian groups by their subgroups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 16
EP  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_5_a1/
LA  - ru
ID  - VTGU_2014_5_a1
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A A. K. Mordovskoi
%T Correctness of Abelian torsion-free groups and determinability of Abelian groups by their subgroups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 16-29
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2014_5_a1/
%G ru
%F VTGU_2014_5_a1
S. Ya. Grinshpon; A. K. Mordovskoi. Correctness of Abelian torsion-free groups and determinability of Abelian groups by their subgroups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2014), pp. 16-29. http://geodesic.mathdoc.fr/item/VTGU_2014_5_a1/

[1] Jonson B., “On direct decomposition of torsion free abelian groups”, Math. Scand., 2 (1959), 361–371 | MR

[2] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954 | MR | Zbl

[3] Crawly P., “Solution of Kaplansky's test problem for primary abelian groups”, J. Algebra, 4 (1965), 413–431 | DOI | MR

[4] de Groot J., “Equivalent abelian groups”, Canad. J. Math., 9 (1957), 291–297 | DOI | MR | Zbl

[5] Rososhek S. K., “Strogo chisto korrektnye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, Tomsk, 1979, 143–150 (in Russian)

[6] Sherstneva A. I., “$U$-posledovatel'nosti i pochti izomorfizm abelevykh $p$-grupp po vpolne kharakteristicheskim podgruppam”, Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 2001, no. 5, 72–80 (in Russian) | MR | Zbl

[7] Grinshpon S. Ya., “f.i.-korrektnost' abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 8, Tomsk, 1989, 65–79 (in Russian) | MR

[8] Grinshpon S. Ya., “f.i.-korrektnye abelevye gruppy”, Uspekhi matem. nauk, 54:6 (1999), 155–156 (in Russian) | DOI | MR | Zbl

[9] Cornel I., “Some ring theoretic Schroder–Bernstein theorems”, Trans. Amer. Math. Soc., 132 (1968), 335–351 | MR

[10] Trnkova V., Koubek V., “The Cantor–Bernstein theorem for fuctors”, Comment. Math. Univ. Carol., 14 (1973), 197–204 | MR | Zbl

[11] Bumby R., “Modules which isomorphic to submodules each other”, Arch. Math., 16 (1965), 184–185 | DOI | MR | Zbl

[12] Holzsager R., Hallahan C., “Mutual direct summands”, Arch. Math., 25 (1974), 591–592 | DOI | MR | Zbl

[13] Rososhek S. K., “Korrektnost' modulei”, Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 1978, no. 10, 77–82 (in Russian) | MR | Zbl

[14] Borsuk K., Teoriya retraktov, Mir Publ., Moscow, 1971 (in Russian) | MR

[15] Eklof P., Sabbagh G., “Model-completions and modules”, Ann. Math. Log., 2 (1971), 251–299 | DOI | MR

[16] Mordovskoy A. K., “Izomorfizm podgrupp abelevykh grupp”, Abelevy gruppy i moduli, 15, Tomsk, 2000, 38–45 (in Russian)

[17] Grinshpon S. Ya., Mordovskoy A. K., “Opredelyaemost' abelevykh grupp svoimi podgruppami i pochti izomorfizm”, Issledovaniya po matematicheskomu analizu i algebre, 3, in Russian, Tomsk, 2001, 72–80

[18] Megibben Ch., “Separable mixed group”, Comment. Math. Univ. Carolin., 4 (1980), 755–768 | MR

[19] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy vpolne razlozhimykh abelevykh grupp”, Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 2004, no. 9, 18–23 (in Russian) | MR

[20] Grinshpon S. Ya., Grinshpon I. E., Sherstneva A. I., “Almost isomorphic torsion free abelian groups and similarity of homogeneously decomposable groups”, Acta Appl. Math., 85 (2005), 147–156 | DOI | MR | Zbl