Numerical solution of the Navier–Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the effectiveness of the implicit iterative line-by-line recurrence method for solving difference elliptical equations arising in numerical simulations of two-dimensional viscous incompressible fluid flows is analyzed. The research is carried out by an example of the problem about a steady two-dimensional lid-driven cavity flow formulated in primitive variables $(u,v,p)$. It is shown that applying the line-by-line recurrence method allows one to reduce the total time for solving the problem in comparison with the use of the present-day effective bi-conjugate gradients method with stabilization. As an illustration of the achieved results, the structure of the flow at $\mathrm{Re}=15000$ is shown. Here, in terms of the use of a non-uniform grid, it became possible to obtain a sequence of bottom-corner vortices up to the fourth level. As a validation of the received solution, the comparison of basic parameters of all vortices with results of other authors was carried out at $\mathrm{Re}=1000$. In addition, the mass imbalance was estimated; it did not exceed $10^{-8}\div10^{-6}$ depending on the location of the cross section in the cavity, and a comparison of the relative size and ‘intensity’ of bottom-corner vortices of the third and fourth levels with the Moffatt analytical solution of the problem of a viscous fluid flow near a sharp corner was carried out.
Keywords: lid-driven cavity flow, Navier–Stokes equations, implicit iterative line-by-line recurrence method.
@article{VTGU_2014_3_a9,
     author = {A. A. Fomin and L. N. Fomina},
     title = {Numerical solution of the {Navier{\textendash}Stokes} equations in the modeling of two-dimensional viscous incompressible fluid flows},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {94--108},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/}
}
TY  - JOUR
AU  - A. A. Fomin
AU  - L. N. Fomina
TI  - Numerical solution of the Navier–Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 94
EP  - 108
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/
LA  - ru
ID  - VTGU_2014_3_a9
ER  - 
%0 Journal Article
%A A. A. Fomin
%A L. N. Fomina
%T Numerical solution of the Navier–Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 94-108
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/
%G ru
%F VTGU_2014_3_a9
A. A. Fomin; L. N. Fomina. Numerical solution of the Navier–Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 94-108. http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/

[1] Ghia U., Ghia K. N., Shin C. T., “High-Re solution for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Computational Physics, 48 (1982), 387–411 | DOI | Zbl

[2] Barragy E., Carey G. F., “Stream function-vorticity driven cavity solution using $p$ finite elements”, Computers Fluids, 26:5 (1997), 453–468 | DOI | Zbl

[3] Erturk E., Corke T. C., Gokcol C., “Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers”, Int. J. Numer. Meth. Fluids, 48 (2005), 747–774 | DOI | Zbl

[4] Isaev V. I., Shapeev V. P., “Varianty metoda kollakatsii i naimenshikh kvadratov povyshennoi tochnosti dlya chislennogo resheniya uravneniya Nave–Stoksa”, ZhVM i MF, 50:10 (2010), 1758–1770 | MR | Zbl

[5] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp.

[6] Belotserkovskii O. M., Guschin V. A., Schennikov V. V., “Metod rasschepleniya v primenenii k resheniyu zadach dinamiki vyazkoi neszhimaemoi zhidkosti”, ZhVM i MF, 15:1 (1975), 197–207 | Zbl

[7] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Per. s angl., Energoatomizdat, M., 1984, 152 pp.

[8] Kuznetsov A. E., Strelets M. Kh., “Chislennoe modelirovanie suschestvenno dozvukovykh statsionarnykh neizotermicheskikh techenii odnorodnogo vyazkogo gaza v kanalakh”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 14:6 (1983), 97–114 | Zbl

[9] Fomin A. A., Chislennoe issledovanie vliyaniya granichnykh uslovii na reshenie zadach termogravitatsionnoi konvektsii v otkrytykh oblastyakh, Dep. v VINITI 22.11.85 No 8069-V, TGU, Tomsk, 1985, 51 pp.

[10] Degi D. V., Starchenko A. V., “Chislennoe reshenie uravnenii Nave–Stoksa na kompyuterakh s parallelnoi arkhitekturoi”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2, 88–98

[11] Wright N. G., Multigrid solutions of elliptic fluid flow problems, Ph. D. thesis, University of Leeds, 1988, 185 pp.

[12] Kashtanova S. V., Okulova N. N., “Matematicheskoe modelirovanie techeniya vyazkoi teploprovodnoi zhidkosti s ispolzovaniem metoda Ls-Stag”, Vestnik MGTU im. N. E. Baumana. Ser. Estestvennye nauki, 2012, Spets. vyp. 2: Matematicheskoe modelirovanie v tekhnike, 86–97

[13] Fomin A. A., Fomina L. N., Neyavnyi iteratsionnyi polineinyi rekurrentnyi metod resheniya raznostnykh ellipticheskikh uravnenii, KemGU, Kemerovo, 2012, 314 pp.

[14] Moffatt H. K., “Viscous and resistive eddies near a sharp corner”, J. Fluid Mechanics, 18, part 1 (1964), 1–18 | DOI | Zbl

[15] Van der Vorst H. A., “Bi-CGStab: a fast and smoothly converging variant of BI-CG for solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13:2 (1992), 631–644 | DOI | MR | Zbl