Numerical solution of the Navier--Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 94-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the effectiveness of the implicit iterative line-by-line recurrence method for solving difference elliptical equations arising in numerical simulations of two-dimensional viscous incompressible fluid flows is analyzed. The research is carried out by an example of the problem about a steady two-dimensional lid-driven cavity flow formulated in primitive variables $(u,v,p)$. It is shown that applying the line-by-line recurrence method allows one to reduce the total time for solving the problem in comparison with the use of the present-day effective bi-conjugate gradients method with stabilization. As an illustration of the achieved results, the structure of the flow at $\mathrm{Re}=15000$ is shown. Here, in terms of the use of a non-uniform grid, it became possible to obtain a sequence of bottom-corner vortices up to the fourth level. As a validation of the received solution, the comparison of basic parameters of all vortices with results of other authors was carried out at $\mathrm{Re}=1000$. In addition, the mass imbalance was estimated; it did not exceed $10^{-8}\div10^{-6}$ depending on the location of the cross section in the cavity, and a comparison of the relative size and ‘intensity’ of bottom-corner vortices of the third and fourth levels with the Moffatt analytical solution of the problem of a viscous fluid flow near a sharp corner was carried out.
Keywords: lid-driven cavity flow, Navier–Stokes equations, implicit iterative line-by-line recurrence method.
@article{VTGU_2014_3_a9,
     author = {A. A. Fomin and L. N. Fomina},
     title = {Numerical solution of the {Navier--Stokes} equations in the modeling of two-dimensional viscous incompressible fluid flows},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {94--108},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/}
}
TY  - JOUR
AU  - A. A. Fomin
AU  - L. N. Fomina
TI  - Numerical solution of the Navier--Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 94
EP  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/
LA  - ru
ID  - VTGU_2014_3_a9
ER  - 
%0 Journal Article
%A A. A. Fomin
%A L. N. Fomina
%T Numerical solution of the Navier--Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 94-108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/
%G ru
%F VTGU_2014_3_a9
A. A. Fomin; L. N. Fomina. Numerical solution of the Navier--Stokes equations in the modeling of two-dimensional viscous incompressible fluid flows. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 94-108. http://geodesic.mathdoc.fr/item/VTGU_2014_3_a9/