A behavior model for porous iron containing mixtures upon shock wave loading
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 82-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of numerical experiments on modeling shock wave loading of solid and porous mixes and alloys containing iron in their composition as a component are presented. The model is based on the assumption that all the mixture components, including gas, are in the thermal equilibrium upon the shock wave loading. The Mie–Grüneisen type equations of state are used to describe the behavior of the condensed phases. The Grüneisen coefficient is assumed to be explicitly dependent only on temperature. This TEC model describes the behavior of solid and porous iron in a wide range of porosity and pressures. The model allows one to describe the behavior of mixtures containing iron and alloys; the alloy is considered as a nonporous mixture with the same ratio of components as in the alloy. Only the equations of state of the mixture components are used for the calculation of the shock wave effect on them. The interest in the research of materials containing iron is associated with the widespread occurrence of iron in the nature, which makes the TEC model promising for simulating the Earth's crust, as well as for solving problems of explosive power compaction to produce materials with given properties. The calculations were conducted for mixtures and alloys of different compositions containing iron. The calculation well corresponds to the data that were received based on experiments performed by many authors. It is shown that the proposed model allows one to describe the behavior of materials containing iron in the shock wave loading using only the component parameters.
Keywords: shock adiabat, porous heterogeneous medium, thermodynamic equilibrium, one-temperature approximation, one-speed approximation
Mots-clés : Grüneisen coefficient.
@article{VTGU_2014_3_a8,
     author = {S. A. Kinelovskii and K. K. Maevskii},
     title = {A behavior model for porous iron containing mixtures upon shock wave loading},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {82--93},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_3_a8/}
}
TY  - JOUR
AU  - S. A. Kinelovskii
AU  - K. K. Maevskii
TI  - A behavior model for porous iron containing mixtures upon shock wave loading
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 82
EP  - 93
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_3_a8/
LA  - ru
ID  - VTGU_2014_3_a8
ER  - 
%0 Journal Article
%A S. A. Kinelovskii
%A K. K. Maevskii
%T A behavior model for porous iron containing mixtures upon shock wave loading
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 82-93
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2014_3_a8/
%G ru
%F VTGU_2014_3_a8
S. A. Kinelovskii; K. K. Maevskii. A behavior model for porous iron containing mixtures upon shock wave loading. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2014), pp. 82-93. http://geodesic.mathdoc.fr/item/VTGU_2014_3_a8/

[1] Kinelovskii S. A., Maevskii K. K., “Prostaya model rascheta udarnykh adiabat poroshkovykh smesei”, FGV, 2011, no. 6, 101–109

[2] Kinelovskii S. A., Maevskii K. K., “Model povedeniya smesi s razlichnymi svoistvami komponentov pri vysokoi kontsentratsii energii”, PMTF, 54:4 (2013), 13–21

[3] Medvedev A. B., Trunin R. F., “Udarnoe szhatie poristykh metallov i silikatov”, UFN, 182:8 (2012), 829–846 | DOI

[4] Drennov O. B., “Dinamicheskoe nagruzhenie tverdykh tel, kharakterizuyuschikhsya otritsatelnym naklonom krivoi plavleniya”, ZhTF, 83:9 (2013), 43–46

[5] Titov V. M., Anisichkin V. F., Bordzilovskii S. A., Karakhanov S. M., Turkin A. I., “Izmerenie skorosti zvuka za frontom udarnoi volny v smesyakh zheleza s almazom”, FGV, 40:4 (2004), 117–130

[6] Gerasimov A. V., Pashkov S. V. Ch, “islennoe modelirovanie probitiya sloistykh pregrad”, Mekhanika kompozitsionnykh materialov i konstruktsii, 19:1 (2013), 49–62 | MR

[7] Baza dannykh udarno-volnovykh eksperimentov, URL: , OIVT RAN http://www.ihed.ras.ru/rusbank/

[8] Trunin R. F., Gudarenko L. F., Zhernokletov M. V., Simakov G. V., Eksperimentalnye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veschestv, ed. R. F. Trunin, RFYaTs-VNIIEF, Sarov, 2006

[9] Altshuler L. V., Krupnikov K. K., Ledenev B. N., Zhuchigin V. I., Brazhnik M. I., “Dinamicheskaya szhimaemost i uravneniya sostoyaniya zheleza pri vysokikh davleniyakh”, ZhETF, 34 (1958), 874–885

[10] Altshuler L. V., Kormer S. B., Bakanova A. A., Trunin R. F., “Uravnenie sostoyaniya alyuminiya, medi i svintsa dlya oblasti vysokikh davlenii”, ZhETF, 38:3 (1960), 790–798

[11] Altshuler L. V., Kormer S. B., Brazhnik M. I., Vladimirov L. A., Speranskaya M. P., Funtikov A. I., “Izentropicheskaya szhimaemost alyuminiya, medi, svintsa i zheleza pri vysokikh davleniyakh”, ZhETF, 38:4 (1960), 1061–1073 | MR

[12] Iosilevskii I. L., “Ob uravnenii sostoyaniya neidealnoi plazmy”, Teplofizika vysokikh temperatur, 18:3 (1980), 447–452

[13] Gryaznov V. K., Iosilevskii I. L., Fortov V. E., “Termodinamika udarno-szhatoi plazmy v kvazikhimicheskom predstavlenii”, Entsiklopediya nizkotemperaturnoi plazmy, Tom prilozhenii III-1, Red. A. N. Starostin i I. L. Iosilevskii, ed. V. E. Fortov, FIZMATLIT, M., 2004

[14] Altshuler L. V., Moiseev B. N., Popov L. V., Simakov G. V., Trunin R. F., “Sravnitelnaya szhimaemost zheleza i svintsa pri davleniyakh 31–34 Mbar”, ZhETF, 54:3 (1968), 785–789

[15] Trunin R. F., Podurets M. A., Popov L. V., Moiseev B. N., Simakov G. V., Sevastyanov A. G., “Opredelenie udarnoi szhimaemosti zheleza do davlenii v 10 TPa (100 Mbar)”, ZhETF, 103:6 (1993), 2189–2199

[16] Avrorin E. N., Vodolaga B. K., Voloshin N. P., Kuropatenko V. F., Kovalenko G. V., Simonenko V., Chernovolyuk B. T., “Eksperimentalnoe podtverzhdenie obolochechnykh effektov na udarnykh adiabatakh alyuminiya i svintsa”, Pisma v ZhETF, 43:5 (1986), 241–244

[17] Trunin R. F., Medvedev A. B., Funtikov A. I., Podurets M. A., Simakov G. V., Sevastyanov A. G., “Udarnoe szhatie poristogo zheleza, medi i volframa i ikh uravneniya sostoyaniya v oblasti terapaskalnykh davlenii”, ZhETF, 95 (1989), 631–641

[18] Trunin R. F., Zhernokletov M. V., Simakov G. V., Gudarenko L. F., Gushchina O. N., “Shock compression of highly porous samples of copper, iron, nickel and their equation of state”, Shock Compression of Condensed Matter – 1997, Prog. Am. Phys. Society Topical Group, Amherst, Massachussets, 1998, 83–86

[19] Avrorin E. N., Vodolaga B. K., Simonenko V. A., Fortov V. E., “Moschnye udarnye volny i ekstremalnye sostoyaniya veschestva”, UFN, 163:5 (1993), 1–34 | DOI

[20] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[21] M. I. Zhernokletov (red.), Metody issledovaniya svoistv materialov pri intensivnykh dinamicheskikh nagruzkakh, FGUP RFYaTs-VNIIEF, Sarov, 2003

[22] Zhernokletov M. V., Simakov G. V., Sutulov Yu. N., Trunin R. F., “Izentropy rasshireniya alyuminiya, zheleza, molibdena, svintsa i tantala”, Teplofizika vysokikh temperatur, 33:1 (1995), 40–43

[23] Marsh P. (ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkeley, 1980, 205

[24] M. van Thiel (ed.), Compendium of shock wave data, Lawrence Livermore Laboratory Report UCRL-50108, Lawrence Livermore Laboratory, Livermore, 1977, 658

[25] Kormer S. I., Funtikov A. N., “Issledovanie udarnogo szhatiya ferrosilitsiya i vozmozhnyi sostav Zemli”, Izv. AN SSSR. Fizika Zemli, 1965, no. 5, 1–3