Combustion modes of the lean methane-air mixture in a U-shaped burner
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 69-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Base on the model of a flowing reactor with an inert internal body, a numerical study of a lean methane-air mixture burning in a U-tube is carried out in the case of initiation of the combustion process by a preliminarily heated internal wall of the tube. The calculations were carried out for two values of a tube extent for revealing qualitative distinctions between established operating regimes. It is shown that, depending on the dimensionless parameter of heat exchange intensity in the reaction mixture on an external wall of the tube and dimensionless parameter of the mixture current, a high-temperature or low-temperature stationary regime, or an oscillatory operating mode can be implemented in the system. It is determined that the high-temperature stationary state is established at some distance from the input of the tube, and oscillatory modes are implemented in the top part of the tube; at the same time, the mixture in the bottom part of the tube has a decreasing temperature profile. It is shown that the parameter of heat exchange intensity of the mixture at the external wall of the tube determines the depth of establishing the high-temperature steady state.
Keywords: lean methane-air mixture, heat and mass transfer process, ignition by the inner wall, steady and unstable operation modes of a burner.
@article{VTGU_2014_2_a6,
     author = {A. Yu. Krainov and K. M. Moiseeva},
     title = {Combustion modes of the lean methane-air mixture in {a~U-shaped} burner},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {69--76},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Krainov
AU  - K. M. Moiseeva
TI  - Combustion modes of the lean methane-air mixture in a U-shaped burner
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 69
EP  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_2_a6/
LA  - ru
ID  - VTGU_2014_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Krainov
%A K. M. Moiseeva
%T Combustion modes of the lean methane-air mixture in a U-shaped burner
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 69-76
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2014_2_a6/
%G ru
%F VTGU_2014_2_a6
A. Yu. Krainov; K. M. Moiseeva. Combustion modes of the lean methane-air mixture in a U-shaped burner. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 69-76. http://geodesic.mathdoc.fr/item/VTGU_2014_2_a6/

[1] Frolov S. M., “Nauka o gorenii i problemy sovremennoy energetiki”, Rossiyskiy khimicheskiy zhurnal, 2008, no. 6(LII), 129–134 (in Russian)

[2] Perlmutter D. D., Stability of chemical reactors, Prentice-Hall, Englewood Cliffs, N.J., 1972

[3] Kakutkina N. A., Korzhavin A. A., Manzhos E. V., Rychkov A. D., V'yun A. V., “Initsiirovanie goreniya gaza v poristoy srede vneshnim istochnikom”, Interekspo Geo-Sibir', 2013, no. 2(5), 189–196 (in Russian)

[4] Burkina R. S., Moiseeva K. M., “Dinamika khimicheskikh protsessov v protochnom reaktore pri teploobmene na bokovoy poverkhnosti reaktora i inertnoy nasadke vnutri nego”, Khaos i struktury v nelineynykh sistemakh. Teoriya i eksperiment, Karaganda, 2012, 300–306 (in Russian)

[5] Maruta K., Minaev S. S., Park Dzh. K., Oh K. S., Fudzhimori T., Fursenko R. V., “Characteristics of microscale combustion in a narrow heated channel”, Combustion, Explosion and Shock Waves, 2004, no. 5(40), 516–523 | DOI

[6] Fursenko R. V., Minaev S. S., “Flame stability in a system with counterflow heat exchange”, Combustion, Explosion, and Shock Waves, 2005, no. 2(41), 133–139 | DOI

[7] Jejurkar S. Y., Mishra D. P., “Numerical characterization of a premixed flame based annular microcombustor”, Int. J. Hydrogen Energy, 35 (2010), 9755–9766 | DOI