Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 58-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of the theoretical and experimental study of ballistic characteristics of spacecraft honeycombs upon impacts from meteoroids and space debris are presented. Consequences of the impact of high-speed particles on thin-walled spacecraft structures spacecraft and their failure criterions are considered. Damage options for honeycomb sandwich structures made of an aluminum alloy are given. An option of modification of the ballistic limit equations for the honeycomb structures on the example of application of the modified Cour-Palais (Christiansen–Cour-Palais) Whipple bumper equation for the purpose to introduce a functional dependence of the critical diameter of penetrating particles on the impact angle is proposed. For a standard honeycomb design of the Spektr-UF spacecraft, the results of the performed experiments received on ultra-high speed launcher are presented. The ballistic limit dependences calculated by a theoretical method are correlated to the experimental values which have been selected by criterion of perforation. Some ways to improve the resistance of the honeycomb panels to meteoroid/debris damage are given.
Keywords: space debris, honeycomb, debris protection, hypervelocity impact, ballistic limit curve.
@article{VTGU_2014_2_a5,
     author = {D. B. Dobritsa},
     title = {Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {58--68},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_2_a5/}
}
TY  - JOUR
AU  - D. B. Dobritsa
TI  - Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 58
EP  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_2_a5/
LA  - ru
ID  - VTGU_2014_2_a5
ER  - 
%0 Journal Article
%A D. B. Dobritsa
%T Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 58-68
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2014_2_a5/
%G ru
%F VTGU_2014_2_a5
D. B. Dobritsa. Theoretical-experimental estimate of resistance of spacecraft honeycomb panels upon impacts from meteoroids and space debris. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 58-68. http://geodesic.mathdoc.fr/item/VTGU_2014_2_a5/

[1] Gerasimov A. V., Dobritsa D. B., Pashkov S. V., Khristenko Yu. F., “Theoretical and experimental study of interaction of protective systems of cosmic station with natural and mancaused fragments”, Conference proceedings “X Zababakhinskie nauchnye chteniya (ZNCh-X)”, 2010 Available at: (in Russian) http://www.vniitf.ru/images/zst/2010/sec1/1-7.pdf

[2] Gerasimov A. V., Dobritsa D. B., Pashkov S. V., Khristenko Yu. F., “Zashchita kosmicheskikh apparatov ot udara vysokoskorostnymi chastitsami: sploshnye, raznesennye i setochnye ekrany”, Ekstremal'nye sostoyaniya veshchestva. Detonatsiya. Udarnye volny, Conference proceedings XIII Kharitonovskie tematicheskie nauchnye chteniya, RFYaTs-VNIIEF Publ., Sarov, 2011, 501–505 (in Russian)

[3] Gerasimov A. V., Dobritsa D. B., Pashkov S. V., Khristenko Yu. F., “Teoretiko-eksperimental'noe modelirovanie effektivnoy zashchity kosmicheskikh apparatov ot vysokoskorostnykh oskolkov”, Zbornik Radova Konferencije MIT 2011, Conference proceedings, Belgrad, Serbia, 2012, 117–121 (in Russian)

[4] Cour-Palais B., “Hypervelocity impact in metals, glass and composites”, Int. J. Impact Engineering, 5 (1987), 221–237 | DOI

[5] Frate D. T., Nahra H. K., “Hypervelocity impact testing of nickel hydrogen battery cells”, AIAA Space Programs and Technologies Conf., Huntsville, Alabama, September 1996, AIAA 96-4292

[6] Taylor E. A., Herbert M. K. Vaughan B. A. M., McDonnell J. A. M., “Hypervelocity impact on carbon fibre reinforced plastic/aluminium honeycomb: comparison with whipple bumper shields”, Int. J. Impact Engineering, 23 (1999), 883–894 | DOI

[7] Lambert M., “Hypervelocity impacts and damage laws”, Ad. Space Res., 19:2 (1997), 369–378 | DOI

[8] Jex D. W., Miller A. M., Mackay C. A., The Characterictics of Penetration for a Double-Sheet Structure with Honeycomb, NASA TM X-5397, 1970

[9] Taylor E. A., Herbert M. K., Gardner D. J., Kay L., “Hypervelocity impact on carbon fibre reinforced plastic (CFRP)/aluminium honeycomb”, Proc. of the Institute of Mechanical Engineers, 211, Part G (1997), 355–363 | DOI

[10] Sennett R. E., Lathrop B. L., “Effects of hypervelocity impact on honeycomb structures”, J. Spacecraft and Rockets, 5 (1968), 1496–1497 | DOI

[11] Eksperimental'noe opredelenie predel'noy stoykosti elementov konstruktsiy KA “Spektr-UF” i protivometeornoy zashchity pri vozdeystvii vysokoskorostnykh chastits, Otchet ob opytno-konstruktorskoy rabote (itogovyy), Nauchno-issledovatel'skiy institut prikladnoy matematiki i mekhaniki Tomskogo gosudarstvennogo universiteta, Tomsk, 2010 (in Russian)

[12] Terrillion F., Warren H. R., Yelle M. J., “Orbital debris shielding design of the radarsat satellite”, 42nd Congress of the International Astronautical Federation (5–11 October 1991, Montreal, Canada), IAF-91-283

[13] Christiansen E. L., “Design practices for spacecraft meteoroid/debris (M/D) protection”, Proc. 1998 Hypervelocity Shielding Workshop, Institute for Advanced technology, The University of Texas at Austin, 1999, IAT Catalog number IAT.MG 0004

[14] Turner R. J., Taylor E. A., McDonnell J. A. M., et al., “Cost effective honeycomb and MLI debris shields for unmanned spacecraft”, Int. J. Impact Engineering, 26 (2001), 785–796 | DOI