Studying the slip phenomenon for a viscous fluid flow in a curved channel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pressure flow of a viscous incompressible fluid in a channel curved at the right angle is studied. We consider three models of the interaction between the fluid and solid wall that satisfy the following boundary conditions: no-slip, Navier slip, and slip with a limit stress. The problem is solved numerically using a finite-difference algorithm based on the SIMPLE scheme. The steady pattern flow with the formation of the circulation areas around corner points is demonstrated. It is characterized by one-dimensional flow regions near inlet and outlet boundaries. Parametric studies of the influence of interaction models and main parameters on the flow pattern are performed. In particular, tangent velocity profiles at the solid wall as functions of the slip length, circulation areas' sizes, and limit stress are constructed.
Keywords: flow, boundary condition, curved channel, numerical simulation.
Mots-clés : viscous fluid
@article{VTGU_2014_2_a3,
     author = {E. I. Borzenko and O. A. Diakova and G. R. Shrager},
     title = {Studying the slip phenomenon for a~viscous fluid flow in a~curved channel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {35--44},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_2_a3/}
}
TY  - JOUR
AU  - E. I. Borzenko
AU  - O. A. Diakova
AU  - G. R. Shrager
TI  - Studying the slip phenomenon for a viscous fluid flow in a curved channel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 35
EP  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_2_a3/
LA  - ru
ID  - VTGU_2014_2_a3
ER  - 
%0 Journal Article
%A E. I. Borzenko
%A O. A. Diakova
%A G. R. Shrager
%T Studying the slip phenomenon for a viscous fluid flow in a curved channel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 35-44
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2014_2_a3/
%G ru
%F VTGU_2014_2_a3
E. I. Borzenko; O. A. Diakova; G. R. Shrager. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 35-44. http://geodesic.mathdoc.fr/item/VTGU_2014_2_a3/

[1] Neto C., Evans D., Bonaccurso E., “Boundary slip in Newtonian liquids: a review of experimental studies”, Reports on Progress in Physics, 39 (2005), 2859–2897 | DOI

[2] Yankov V. I., Pererabotka voloknoobrazuyushchikh polimerov. Osnovy reologii polimerov i techenie polimerov v kanalakh, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut komp'yuternykh issledovaniy, Moscow–Izhevsk, 2008, 264 pp. (in Russian)

[3] Koopmans Rudolf J., Molenaar Jaap., “The “sharkskin effect” in polymer extrusion”, Polymer Engineering Science, 38 (1998), 101–107 | DOI

[4] Rao I. J., Rajagopal K. R., “The effect of the slip boundary condition on the flow of fluids in a channel”, Acta Mechanica, 135 (1999), 113–126 | DOI | MR | Zbl

[5] Bahrami M., Tamayol A., Taheri P., “Slip-flow pressure drop in microchannels of general cross section”, J. Fluids Engineering, 131 (2009), 031201-1–031201-8 | DOI

[6] Volker J., “Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equation – numerical tests and aspects of the implementation”, J. Computational and Applied Mechanics, 147 (2002), 287–300 | DOI | MR | Zbl

[7] Minakova A., Rudyak V., Dektereva A., Gavrilov A., “Investigation of slip boundary conditions in the $T$-shaped microchannel”, Int. J. Heat and Fluid Flow, 43 (2013), 161–169 | DOI

[8] Hoomana K., Hooman F., Famouri M., “Scaling effects for flow in micro-channels: Variable property, viscous heating, velocity slip, and temperature jump”, Int. Communications in Heat and Mass Transfer, 36 (2009), 192–196 | DOI

[9] Issa R. J., “Solution of the implicity discretized reacting flow equations by operator-splitting”, Journal of Computational Physics, 62 (1986), 40–65 | DOI | MR | Zbl