Determination of accessory parameters for mapping onto a numerable polygon
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 18-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a simply connected region of the half-plane type with symmetry of translation along the real axis by $2\pi$ and such that a part of the boundary from a point $w_0$ to a point $w_0+2\pi$ consists of a finite number of straight line segments and rays. The region is called a numerable polygon with symmetry of translation along the real axis by $2\pi$. Conformal mappings of the upper half-plane onto a numerable polygon find applications in some problems of hydrodynamics, heat conduction problems, microwave theory, etc. The representation of conformal mappings of the half-plane onto a numerable polygon with symmetry of translation along the real axis by $2\pi$ is known in a form of the Christoffel–Schwarz type integral. Different efficient numerical methods of finding the accessory parameters included in the classical Christoffel–Schwarz integral have been developed; one of them was proposed by P. P. Kufarev. In this paper, the problem of finding the accessory parameters in the Christoffel–Schwarz integral for mapping onto a numerable polygon with symmetry of translation by $2\pi$ along the real axis is reduced to the problem of integrating a system of ordinary differential equations with Cauchy initial conditions by use of an idea of P. P. Kufarev. The system of differential equations is derived using the Christoffel–Schwarz formula for mapping onto a numerable polygon and the differential equation of the Loewner type for mapping the half-plane onto the plane with cuts along pairwise disjoint simple curves $\gamma_m$ tending to infinity, $\gamma_m=\gamma_0+2\pi m$, $m\in\mathbb Z$.
Keywords: conformal mapping, numerable polygon, symmetry of translation, accessory parameters, P. P. Kufarev's method.
@article{VTGU_2014_2_a1,
     author = {I. A. Kolesnikov},
     title = {Determination of accessory parameters for mapping onto a~numerable polygon},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {18--28},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_2_a1/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Determination of accessory parameters for mapping onto a numerable polygon
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 18
EP  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_2_a1/
LA  - ru
ID  - VTGU_2014_2_a1
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Determination of accessory parameters for mapping onto a numerable polygon
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 18-28
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2014_2_a1/
%G ru
%F VTGU_2014_2_a1
I. A. Kolesnikov. Determination of accessory parameters for mapping onto a numerable polygon. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2014), pp. 18-28. http://geodesic.mathdoc.fr/item/VTGU_2014_2_a1/

[1] Kopanev S. A., Kopaneva L. S., “Formula tipa formuly Kristoffelya–Shvartsa dlya schetnougol'nika”, Vestnik Tomskogo gosudarstvennogo universiteta, 280 (2003), 52–54 (in Russian)

[2] Floryan J. M., “Schwarz–Christoffel methods for conformal mapping of regions with a periodic boundary”, J. Comput. and Applied Math., 46 (1993), 77–102 | DOI | MR | Zbl

[3] Hussenpflug W. S., “Elliptic integrals and the Schwarz–Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR

[4] Aleksandrov I. A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriey perenosa”, Izv. vuzov. Matematika, 1999, no. 6(445), 15–18 (in Russian) | MR | Zbl

[5] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Shvartsa–Kristoffelya”, Dokl. Akad. Nauk SSSR, 57:6 (1947), 535–537 (in Russian) | MR | Zbl

[6] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsiy, Nauka Publ., Moscow, 1976, 344 pp. (in Russian) | MR

[7] Chistyakov Yu. V., Chislennyy metod opredeleniya funktsii, konformno otobrazhayushchey krug na mnogougol'niki, Diss. kand. fiz.-mat. nauk, Tomsk, 1953 (in Russian)

[8] Hopkins T. R., Roberts D. E., “Kufarev's metod for determining the Schwartz–Christoffel parameters”, Numer. Math., 33 (1979), 353–365 | DOI | MR | Zbl

[9] Gutlyanskiy V. Ya., Zaydan A. O., “O konformnykh otobrazheniyakh poligonal'nykh oblastey”, Ukr. Matem. Zhurn., 45:11 (1993), 1464–1467 (in Russian) | MR

[10] Nasyrov S. R., Nizamieva L. Yu., “Opredelenie aktsessornykh parametrov v smeshannoy obratnoy kraevoy zadache s poligonal'noy izvestnoy chast'yu granitsy”, Izv. Sarat. univ. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:4 (2011), 34–40 (in Russian)

[11] Aleksandrov I. A., Kopaneva L. S., “Levnerovskie semeystva otobrazheniy poluploskosti na oblasti s simmetriey perenosa”, Vestnik Tomskogo gosudarstvennogo universiteta, 284 (2004), 5–7 (in Russian)

[12] Nasyrov S. R., Geometricheskie problemy teorii razvetvlennykh nakrytiy rimanovykh poverkhnostey, Magarif Publ., Kazan', 2008, 276 pp. (in Russian)