The linear stability of an inviscid shear flow of a thermally non-equilibrium molecular gas
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 71-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the linear stability of plane-parallel shear flows of a vibrationally excited molecular gas is investigated using a two-temperature gas dynamics model. The Rayleigh conditions and the semicircle theorem (Howard's semicircle theorem) are generalized to the case of a thermally non-equilibrium gas. It is shown that the instability in a shear flow is necessarily developed under the first Rayleigh condition stated in the same form as for a homogeneous and stratified incompressible liquid and ideal gas. However, a more rigid restriction (known as the semicircle theorem) on the complex phase speed can be obtained only under some additional conditions. In addition, a generalized condition about the necessity of existence of an inflection point on an unstable speed profile (the second Rayleigh condition) is obtained.
Keywords: linear stability theory, Rayleigh conditions, semicircle theorem (Howard's semicircle theorem), vibrational relaxation, equations of two-temperature gas dynamics.
@article{VTGU_2014_1_a6,
     author = {I. V. Ershov},
     title = {The linear stability of an inviscid shear flow of a~thermally non-equilibrium molecular gas},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {71--81},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_1_a6/}
}
TY  - JOUR
AU  - I. V. Ershov
TI  - The linear stability of an inviscid shear flow of a thermally non-equilibrium molecular gas
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 71
EP  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_1_a6/
LA  - ru
ID  - VTGU_2014_1_a6
ER  - 
%0 Journal Article
%A I. V. Ershov
%T The linear stability of an inviscid shear flow of a thermally non-equilibrium molecular gas
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 71-81
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2014_1_a6/
%G ru
%F VTGU_2014_1_a6
I. V. Ershov. The linear stability of an inviscid shear flow of a thermally non-equilibrium molecular gas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 71-81. http://geodesic.mathdoc.fr/item/VTGU_2014_1_a6/

[1] Drazin P. G., Howard L. N., “Hydrodynamic stability of parallel flow of inviscid fluid”, Adv. Appl. Mech., 9, Acad. Press, N.Y., 1966, 1–89 | DOI

[2] Grigor'ev Yu. N., Ershov I. V., Ustoychivost' techeniy relaksiruyushchikh molekulyarnykh gazov, Izd-vo SO RAN, Novosibirsk, 2012, 230 pp. (in Russian)

[3] Grigor'ev Yu. N., Ershov I. V., “Podavlenie vikhrevykh vozmushcheniy relaksatsionnym protsessom v molekulyarnom gaze”, PMTF, 44:4 (2003), 22–34 (in Russian) | MR | Zbl

[4] Grigor'ev Yu. N., Ershov I. V., Ershova E. E., “Vliyanie kolebatel'noy relaksatsii na pul'satsionnuyu aktivnost' v techeniyakh vozbuzhdennogo dvukhatomnogo gaza”, PMTF, 45:3 (2004), 15–23 (in Russian) | Zbl

[5] Ershov I. V., Zyryanov K. I., “Dissipatsiya voln Kel'vina–Gel'mgol'tsa v kolebatel'no neravnovesnom dvukhatomnom gaze”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 1(17), 68–80 (in Russian)

[6] Grigor'ev Yu. N., Ershov I. V., “Dissipatsiya vikhrevykh vozmushcheniy v kolebatel'no neravnovesnom gaze”, Teplofiz. i aeromekh., 19:3 (2012), 291–300 (in Russian) | MR

[7] Vinnichenko N. A., Nikitin N. V., Uvarov A. V., “Vikhrevaya dorozhka Karmana v kolebatel'noneravnovesnom gaze”, Izv. RAN. MZhG, 2005, no. 5, 107–114 (in Russian) | Zbl

[8] Grigor'ev Yu. N., Ershov I. V., “Vliyanie ob"emnoy vyazkosti na neustoychivost' Kel'vina–Gel'mgol'tsa”, PMTF, 49:3 (2008), 73–84 (in Russian) | MR | Zbl

[9] Grigor'ev Yu. N., Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reynol'dsa v szhimaemom techenii Kuetta. Vliyanie ob"emnoy vyazkosti”, PMTF, 51:5 (2010), 59–67 (in Russian) | MR | Zbl

[10] Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reynol'dsa v techenii Kuetta kolebatel'no-neravnovesnogo molekulyarnogo gaza”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2(18), 99–112 (in Russian)

[11] Grigor'ev Yu. N., Ershov I. V., “Kriticheskie chisla Reynol'dsa v techenii Kuetta kolebatel'no vozbuzhdennogo dvukhatomnogo gaza. Energeticheskiy podkhod”, PMTF, 53:4 (2012), 57–73 (in Russian) | MR

[12] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyushchikh gazov, Izd-vo S.-Peterburskogo un-ta, SPb., 2003, 272 pp. (in Russian)

[13] Drazin F., Vvedenie v teoriyu gidrodinamicheskoy ustoychivosti, Fizmatlit, Moscow, 2005, 288 pp. (in Russian)

[14] Blumen W., “Shear layer instability of an inviscid compressible fluid”, J. Fluid Mech., 40, Part 4 (1970), 769–781 | DOI | Zbl

[15] Duck P. W., Erlebacher G., Hussaini M. Y., “On the linear stability of compressible plane Couette flow”, J. Fluid Mech., 258 (1994), 131–165 | DOI | MR | Zbl

[16] Hu S., Zhong X., “Linear stability of viscous supersonic plane Couette flow”, Phys. Fluids, 10:3 (1998), 709–729 | DOI | MR | Zbl

[17] Malik M., Dey J., Alam M., “Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow”, Physical Rev. E, 77:3 (2008), 036322-1-036322-15 | DOI | MR