On equations of mathematical physics containing multi-homogeneous functions of derivatives
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 42-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the concept of a multi-homogeneous function for which the homogeneity property holds for some subsets of its set of arguments. Some properties of such functions have been formulated. A class of mathematical physics equations containing a multi-homogeneous function of the first order derivatives with respect to spatial variables and a linear differential operator in time is considered. Using the method of separation of variables, we obtain solutions of equations of this kind in the form of finite sums in which each term depends on the time and spatial variables belonging to one of the above homogeneity subvectors $X_k$. It is shown that if all the constants of separation of variables are equal to zero, then the solution depends on arbitrary functions of some linear combinations of spatial variables $z_k$ forming subvector $X_k$. For the cases of non-zero values of constants of separation of variables, we obtained solutions characterized by linear dependence on the values of $z_k$, solutions with the power and exponential dependence on these variables, and solutions containing arbitrary functions of variables forming subvectors $X_k$. The obtained results are illustrated by an example of an equation of second order in time with a multi-homogeneous function of four variables.
Mots-clés : equation
Keywords: multi-homogeneous function, variables separation method, partial derivative.
@article{VTGU_2014_1_a3,
     author = {I. V. Rakhmelevich},
     title = {On equations of mathematical physics containing multi-homogeneous functions of derivatives},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--50},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_1_a3/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - On equations of mathematical physics containing multi-homogeneous functions of derivatives
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 42
EP  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_1_a3/
LA  - ru
ID  - VTGU_2014_1_a3
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T On equations of mathematical physics containing multi-homogeneous functions of derivatives
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 42-50
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2014_1_a3/
%G ru
%F VTGU_2014_1_a3
I. V. Rakhmelevich. On equations of mathematical physics containing multi-homogeneous functions of derivatives. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 42-50. http://geodesic.mathdoc.fr/item/VTGU_2014_1_a3/

[1] Polyanin A. D., Zaytsev V. F., Zhurov A. I., Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki, Fizmatlit, Moscow, 2005 (in Russian)

[2] Polyanin A. D., Zaytsev V. F., Spravochnik po nelineynym uravneniyam matematicheskoy fiziki: tochnye resheniya, Fizmatlit, Moscow, 2002 (in Russian) | MR

[3] Rakhmelevich I. V., “O primenenii metoda razdeleniya peremennykh k uravneniyam matematicheskoy fiziki, soderzhashchim odnorodnye funktsii ot proizvodnykh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 3(23), 37–44 (in Russian)

[4] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, Moscow, 1984 (in Russian) | MR

[5] Rakhmelevich I. V., “O nekotorykh uravneniyakh v chastnykh proizvodnykh, soderzhashchikh mul'tiodnorodnye funktsii”, Materialy III Mezhdunarodnoy zaochnoy nauchno-prakticheskoy konferentsii “Nauchnaya diskussiya: voprosy fiziki, matematiki, informatiki”, 2012, 18–23

[6] Zaytsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsial'nym uravneniyam, Fizmatlit, Moscow, 2001 (in Russian) | MR