On equivalence of the analytical and geometrical definitions of mappings with an $s$-averaged characteristic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 25-41
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we continue to develop the geometric method of studying properties of space mappings with an $s$-averaged characteristic. The method is based on the characteristic distortion law for modules of families of curves. In recent decades, the theory of mappings with bounded distortion in the $n$-dimensional Euclidean space is one of the most meaningful and intensively developed branches of the function theory. These mappings were introduced and systematically studied in works by Yu. G. Reshetnyak, published since 1966. A part of Yu. G. Reshetnyak's results is contained in [1]. The most powerful tools used in the study of space mapping properties are methods that study invariance properties of conformal capacity or the module of families of curves. The equivalence of analytical and geometrical (expressed in terms of the conformal capacity of condensers) definitions of mappings with bounded distortion was introduced by O. Martio, S. Rickman and J. Väisälä [2]. In [3], the equivalence was proved for definitions of homeomorphic mappings with distortion bounded on the average. The equivalence for mappings nonhomeomorphic with distortion bounded on the average was considered in [4]. In the presented paper, we give a geometric definition of mappings with an $s$-averaged characteristic using the concept of a spherical $p$-module of a family of curves. This definition can also be interpreted as a generalization of the method of modules for mappings with an $s$-averaged characteristic. We also study these mappings properties and prove the equivalence of the geometric and analytic definitions using the distortion theorems.
Keywords: space mappings with an $s$-averaged characteristic, geometrical method of modules, branching points.
Mots-clés : equivalence
@article{VTGU_2014_1_a2,
     author = {A. N. Malyutina and M. A. Elizarova},
     title = {On equivalence of the analytical and geometrical definitions of mappings with an $s$-averaged characteristic},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {25--41},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2014_1_a2/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - M. A. Elizarova
TI  - On equivalence of the analytical and geometrical definitions of mappings with an $s$-averaged characteristic
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2014
SP  - 25
EP  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2014_1_a2/
LA  - ru
ID  - VTGU_2014_1_a2
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A M. A. Elizarova
%T On equivalence of the analytical and geometrical definitions of mappings with an $s$-averaged characteristic
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2014
%P 25-41
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2014_1_a2/
%G ru
%F VTGU_2014_1_a2
A. N. Malyutina; M. A. Elizarova. On equivalence of the analytical and geometrical definitions of mappings with an $s$-averaged characteristic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2014), pp. 25-41. http://geodesic.mathdoc.fr/item/VTGU_2014_1_a2/

[1] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982, 288 pp. (in Russian) | MR | Zbl

[2] Martio O., Rickman S., Vaisala J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 448 (1969), 1–40 | MR

[3] Kruglikov V. I., Paykov V. I., Nekotorye geometricheskie svoystva otobrazheniy s iskazheniem, ogranichennym v srednem, Dep. v VINITI 06.09.82 No 4747-82 Dep/, Donetsk un-t, Donetsk, 1982, 43 pp. (in Russian)

[4] Malyutina A. N., “Ob ekvivalentnosti geometricheskogo i analiticheskogo opredeleniy otobrazheniy s ogranichennym v srednem iskazheniem”, Ekstremal'nye zadachi teorii funktsiy, 8, Izd-vo Tom. un-ta, Tomsk, 1990, 64–70 (in Russian)

[5] Malyutina A. N., Elizarova M. A., “Otsenki iskazheniya moduley dlya otobrazheniy s $s$-usrednennoy kharakteristikoy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), 5–15 (in Russian)

[6] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983, 152 pp. (in Russian) | MR | Zbl

[7] Rado T., Reichelderfer R. V., Continuous transformation in analisis, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1955, 442 pp. | Zbl

[8] Chernavskiy A. V., “Konechnokratnye otkrytye otobrazheniya mnogoobraziy”, Mat. sb., 65(107):3 (1964), 357–369 (in Russian) | MR | Zbl

[9] Poletskiy E. A., “Metod moduley dlya negomeomorfnykh kvazikonformnykh otobrazheniy”, Mat. sbornik, 83(125):2(10) (1970), 261–272 (in Russian) | MR | Zbl

[10] Malyutina A. N., Elizarova M. A., “Teoremy o polunepreryvnosti snizu otobrazheniy s $s$-usrednennoy kharakteristikoy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 4(8), 46–52 (in Russian)

[11] Elizarova M. A., Malyutina A. N., “Otobrazheniya s $s$-usrednennoy kharakteristikoy. Opredelenie i svoystva”, LAP LAMBERT, Academic Publishing, 2013, 121 (in Russian)

[12] Vaisala J., Lectures on $n$-dimentional quasiconformal mappings, Lectures and Notes in Math., Springer-Verlag, Berlin–Heidelberg–New-York, 1971, 144 pp. | MR | Zbl

[13] Gol'dshteyn V. M., “Emkost' i prodolzhenie funktsiy s obobshchennymi proizvodnymi”, Sib. mat. zhurn., 23:1 (1982), 49–59 (in Russian) | MR

[14] Malyutina A. N., Krivosheeva I. I., Batalova N. N., “Iskazhenie sfericheskogo modulya semeystva krivykh”, Issledovaniya po matematicheskomu analizu i algebre, 3, Izd-vo TGU, Tomsk, 2001, 179–195 (in Russian)

[15] Gusman M., Differentsirovanie integralov v $\mathbf R^n$, Mir, Moscow, 1978, 200 pp. (in Russian) | MR

[16] Hesse J., “A $p$-extremal length and $p$-capacity”, Arkiv for Math., 13:1 (1975), 131–144 | DOI | MR | Zbl

[17] Maz'ya V. G., “O nekotorykh integral'nykh neravenstvakh dlya funktsiy mnogikh peremennykh”, Problemy matematicheskogo analiza, 3, Izd-vo LGU, L., 1973, 33–68 (in Russian)

[18] Malyutina A. N., “Ustranimost' izolirovannyy osobennosti dlya otobrazheniy s iskazheniem, ogranichennym v $s$-srednem”, Kompleksnyy analiz i matematicheskaya fizika, Shkolaseminar. Materialy dokladov, Krasnoyarsk, 1987, 72 (in Russian)

[19] Sychev A. V., Malyutina A. N., “Ob otobrazheniyakh s ogranichennym v srednem iskazheniem”, Dokl. AN SSSR, 283:2 (1985), 317–320 (in Russian) | MR | Zbl

[20] Malyutina A. N., Elizarova M. A., “Differentsial'nye svoystva otobrazheniy s $s$-usrednennoy kharakteristikoy”, Vestnik TGU, 2007, no. 300(1), 124–129 (in Russian)

[21] Malyutina A. N., Elizarova M. A., “O svyazi klassov otobrazheniy s $s$-usrednennoy kharakteristikoy s nekotorymi klassami prostranstvennykh otobrazheniy”, Vestnik Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 4(12), 18–31 (in Russian)

[22] Martio O., Ryazanov V., Srebro U., Yakubov E., “K teorii $Q$-gomeomorfizmov”, Dokl. RAN, 381:1 (2001), 20–22 (in Russian) | MR | Zbl

[23] Martio O., Ryazanov V., Srebro U., Yakubov E., “Mappings with finite length distortion”, J. d'Anal. Math., 93 (2004), 215–236 | DOI | MR | Zbl

[24] Martio O., Ryazanov V., Srebro U., Yakubov E., “$Q$-homeomorphisms”, Contemporary Math., 364 (2004), 193–203 | DOI | MR | Zbl

[25] Martio O., Ryazanov V., Srebro U., Yakubov E., “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn., 30:1 (2005), 1–21 | MR

[26] Ryazanov V., Sevost'yanov E., “Toward the theory of ring $Q$-homeomorphisms”, Israel J. Math., 168 (2008), 101–118 | DOI | MR | Zbl

[27] Ryazanov V. I., Sevost'yanov E. A., “Ravnostepenno nepreryvnye klassy kol'tsevykh $Q$-gomeomorfizmov”, Sib. matem. zhurn., 48:6 (2007), 1361–1376 (in Russian) | MR | Zbl