Fields on surfaces that are in a~point correspondence
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69
Voir la notice de l'article provenant de la source Math-Net.Ru
A continuation of the honeycomb panel modeling research. The modes is based on a point correspondence of a pair of surfaces and on describing invariants accompanying the aforesaid geometrical construction and referred (mostly) to the “extrinsic geometry of surfaces”. The notion of joint curvatures of surfaces has been introduced, pertaining to those in point correspondence. Both scalar fields and associated vector fields generated by the surfaces' correspondence have been specified.
Keywords:
pair of surfaces, point correspondence, local metric, first quadratic form, second quadratic form, joint curvatures.
@article{VTGU_2013_6_a6,
author = {M. S. Bukhtyak and A. V. Nikul'chikov},
title = {Fields on surfaces that are in a~point correspondence},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {56--69},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/}
}
TY - JOUR AU - M. S. Bukhtyak AU - A. V. Nikul'chikov TI - Fields on surfaces that are in a~point correspondence JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 56 EP - 69 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/ LA - ru ID - VTGU_2013_6_a6 ER -
M. S. Bukhtyak; A. V. Nikul'chikov. Fields on surfaces that are in a~point correspondence. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/