Fields on surfaces that are in a~point correspondence
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuation of the honeycomb panel modeling research. The modes is based on a point correspondence of a pair of surfaces and on describing invariants accompanying the aforesaid geometrical construction and referred (mostly) to the “extrinsic geometry of surfaces”. The notion of joint curvatures of surfaces has been introduced, pertaining to those in point correspondence. Both scalar fields and associated vector fields generated by the surfaces' correspondence have been specified.
Keywords: pair of surfaces, point correspondence, local metric, first quadratic form, second quadratic form, joint curvatures.
@article{VTGU_2013_6_a6,
     author = {M. S. Bukhtyak and A. V. Nikul'chikov},
     title = {Fields on surfaces that are in a~point correspondence},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {56--69},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
AU  - A. V. Nikul'chikov
TI  - Fields on surfaces that are in a~point correspondence
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 56
EP  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/
LA  - ru
ID  - VTGU_2013_6_a6
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%A A. V. Nikul'chikov
%T Fields on surfaces that are in a~point correspondence
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 56-69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/
%G ru
%F VTGU_2013_6_a6
M. S. Bukhtyak; A. V. Nikul'chikov. Fields on surfaces that are in a~point correspondence. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/