Fields on surfaces that are in a point correspondence
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuation of the honeycomb panel modeling research. The modes is based on a point correspondence of a pair of surfaces and on describing invariants accompanying the aforesaid geometrical construction and referred (mostly) to the “extrinsic geometry of surfaces”. The notion of joint curvatures of surfaces has been introduced, pertaining to those in point correspondence. Both scalar fields and associated vector fields generated by the surfaces' correspondence have been specified.
Keywords: pair of surfaces, point correspondence, local metric, first quadratic form, second quadratic form, joint curvatures.
@article{VTGU_2013_6_a6,
     author = {M. S. Bukhtyak and A. V. Nikul'chikov},
     title = {Fields on surfaces that are in a~point correspondence},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {56--69},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
AU  - A. V. Nikul'chikov
TI  - Fields on surfaces that are in a point correspondence
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 56
EP  - 69
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/
LA  - ru
ID  - VTGU_2013_6_a6
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%A A. V. Nikul'chikov
%T Fields on surfaces that are in a point correspondence
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 56-69
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/
%G ru
%F VTGU_2013_6_a6
M. S. Bukhtyak; A. V. Nikul'chikov. Fields on surfaces that are in a point correspondence. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 56-69. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a6/

[1] Bukhtyak M. S., Nikulchikov A. V., “Modelirovanie deformatsii sotovoi paneli”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 2(22), 5–16

[2] Kagan V. F., Osnovy teorii poverkhnostei, chast vtoraya, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1948, 407 pp. | MR

[3] Bukhtyak M. S., Analiz i modelirovanie slozhnykh geometricheskikh ob'ektov. Vvedenie v Marle. Vychisleniya v geometrii, URL: http://edu.tsu.ru/eor/resourse/574/tpl/index.html

[4] Dharmasena Kumar P., Wadley Haydn N. G., Hue Zhenyu, Hutchinson John W., “Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading”, Int. J. Impact Engineering, 35 (2008), 1063–1074 | DOI

[5] Rathbun H. J., Radford D. D., Hue Z., et al., “Performance of metallic honeycomb-core sandwich beams under shock loading”, Int. J. Solids and Structures, 43 (2006), 1746–1763 | DOI | Zbl

[6] Panin V. F., Gladkov Yu. A., Konstruktsii s zapolnitelem, Mashinostroenie, M., 1991

[7] Matematicheskaya entsiklopediya, v. 3, Sovetskaya entsiklopediya, M., 1982, 574 pp.

[8] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979, 760 pp. | MR

[9] Ivanov A. O., Tuzhilin A. A., Lektsii po klassicheskoi differentsialnoi geometrii, Novaya universitetskaya biblioteka, 2009, 233 pp.

[10] Rashevskii P. K., Kurs differentsialnoi geometrii, GITTL, M.–L., 1950, 428 pp.

[11] Shapukov B. N., Differentsialnaya geometriya i osnovy tenzornogo analiza, KGU, Kazan, 2007, 135 pp.

[12] Favar Zh., Kurs lokalnoi differentsialnoi geometrii, GITTL, M., 1960, 559 pp.

[13] Blyashke V., Differentsialnaya geometriya, ONTI NKTP, M.–L., 1935, 330 pp.

[14] Agafonov S. A., German A. D., Muratova T. V., Differentsialnye uravneniya, 3-e izd., Izd-vo MGTU im. N. E. Baumana, M., 2004, 352 pp.