Conformal mapping onto a~circular polygon with double simmetry
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26
Voir la notice de l'article provenant de la source Math-Net.Ru
A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.
Keywords:
conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
@article{VTGU_2013_6_a2,
author = {I. A. Kolesnikov},
title = {Conformal mapping onto a~circular polygon with double simmetry},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {20--26},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/}
}
TY - JOUR AU - I. A. Kolesnikov TI - Conformal mapping onto a~circular polygon with double simmetry JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 20 EP - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/ LA - ru ID - VTGU_2013_6_a2 ER -
I. A. Kolesnikov. Conformal mapping onto a~circular polygon with double simmetry. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/