Conformal mapping onto a~circular polygon with double simmetry
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26

Voir la notice de l'article provenant de la source Math-Net.Ru

A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.
Keywords: conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
@article{VTGU_2013_6_a2,
     author = {I. A. Kolesnikov},
     title = {Conformal mapping onto a~circular polygon with double simmetry},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--26},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Conformal mapping onto a~circular polygon with double simmetry
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 20
EP  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/
LA  - ru
ID  - VTGU_2013_6_a2
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Conformal mapping onto a~circular polygon with double simmetry
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 20-26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/
%G ru
%F VTGU_2013_6_a2
I. A. Kolesnikov. Conformal mapping onto a~circular polygon with double simmetry. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/