Conformal mapping onto a circular polygon with double simmetry
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|<1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.
Keywords: conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
@article{VTGU_2013_6_a2,
     author = {I. A. Kolesnikov},
     title = {Conformal mapping onto a~circular polygon with double simmetry},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--26},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - Conformal mapping onto a circular polygon with double simmetry
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 20
EP  - 26
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/
LA  - ru
ID  - VTGU_2013_6_a2
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T Conformal mapping onto a circular polygon with double simmetry
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 20-26
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/
%G ru
%F VTGU_2013_6_a2
I. A. Kolesnikov. Conformal mapping onto a circular polygon with double simmetry. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 20-26. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a2/

[1] Seth B. R., “Torsion of beams whose cross-section is a regular polygon of $n$ side”, Mathematical Proceedings of the Cambridge Philosophical Society, 30:2 (1934), 139–149 | DOI | Zbl

[2] Bassal W. A., “The classical torsion problem for sections with curvilinear boundaries”, Journal of the Mechanics and Physics of Solids, 8 (1960), 87–99 | DOI | MR | Zbl

[3] Lee K., “Torsion of fibers of an $n$-sided regular polygonal cross-section”, Textile Research Journal, 77:2 (2007), 111–115 | DOI

[4] Hassenpflug W. C., “Torsion of uniform bars with polygon cross-section”, Computers and Mathematics with Applications, 46 (2003), 313–392 | DOI | MR | Zbl

[5] Aleksandrov I. A., Sobolev V. V., Matematicheskie zadachi teorii uprugosti, zadacha Sen-Venana, LAP Lambert Academic Publishing, 2011, 100 pp.

[6] Aleksandrov I. A., Sadritdinova G. D., “Otobrazhenie s simmetriei vrascheniya”, Izvestiya vysshikh uchebnykh zavedenii, 1998, no. 10(437), 3–6 | MR | Zbl

[7] Wang C. Y., “Optimization of torsion bars with rounded polygonal cross section”, Journal of Engineering Mechanics, 139 (2013), 629–634 | DOI

[8] Beitmen G., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, v. 1, Nauka, Fizmatlit, M., 1965, 296 pp.

[9] Poole E. G. C., Introduction to the theory of linear differential equations, Oxford University Press, London, 1936, 202 pp. | MR | Zbl

[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, Fizmatlit, M., 1966, 628 pp. | MR | Zbl