On algebraic integers
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 18-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If $\eta_1,\dots,\eta_n$ are roots of a polynomial of degree $n$ irreducible over the field of rationals with the highest coefficient 1, then the sum$(\eta_1)^k+\dots+(\eta_n)^k$ is an integer for each natural $k$.
Keywords: integer, irreducible.
Mots-clés : algebraic
@article{VTGU_2013_6_a1,
     author = {A. I. Zabarina and G. G. Pestov},
     title = {On algebraic integers},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {18--19},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/}
}
TY  - JOUR
AU  - A. I. Zabarina
AU  - G. G. Pestov
TI  - On algebraic integers
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 18
EP  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/
LA  - ru
ID  - VTGU_2013_6_a1
ER  - 
%0 Journal Article
%A A. I. Zabarina
%A G. G. Pestov
%T On algebraic integers
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 18-19
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/
%G ru
%F VTGU_2013_6_a1
A. I. Zabarina; G. G. Pestov. On algebraic integers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 18-19. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR | Zbl

[2] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[3] van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[4] Aleksandrov I. A., Kompleksnyi analiz, Chast 1, 2, Izdatelstvo Tomskogo universiteta, Tomsk, 2012