On algebraic integers
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 18-19
Cet article a éte moissonné depuis la source Math-Net.Ru
If $\eta_1,\dots,\eta_n$ are roots of a polynomial of degree $n$ irreducible over the field of rationals with the highest coefficient 1, then the sum$(\eta_1)^k+\dots+(\eta_n)^k$ is an integer for each natural $k$.
Keywords:
integer, irreducible.
Mots-clés : algebraic
Mots-clés : algebraic
@article{VTGU_2013_6_a1,
author = {A. I. Zabarina and G. G. Pestov},
title = {On algebraic integers},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {18--19},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/}
}
A. I. Zabarina; G. G. Pestov. On algebraic integers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 18-19. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a1/
[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR | Zbl
[2] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR
[3] van der Varden B. L., Algebra, Nauka, M., 1976 | MR
[4] Aleksandrov I. A., Kompleksnyi analiz, Chast 1, 2, Izdatelstvo Tomskogo universiteta, Tomsk, 2012