The problem of estimating the curvature of the level line under conformal mappings of a circle
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A task about finding an exact upper estimate for the curvature of level lines on the class $S$ of univalent holomorphic mappings from a unit circle $S$ is justified as a topical one and its well-known partial solutions for subclasses of mappings from $S$ are presented.
Keywords: conformal mapping, level line, curvature, method of internal variations.
@article{VTGU_2013_6_a0,
     author = {I. A. Aleksandrov and S. A. Kopanev},
     title = {The problem of estimating the curvature of the level line under conformal mappings of a~circle},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--17},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_6_a0/}
}
TY  - JOUR
AU  - I. A. Aleksandrov
AU  - S. A. Kopanev
TI  - The problem of estimating the curvature of the level line under conformal mappings of a circle
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 5
EP  - 17
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_6_a0/
LA  - ru
ID  - VTGU_2013_6_a0
ER  - 
%0 Journal Article
%A I. A. Aleksandrov
%A S. A. Kopanev
%T The problem of estimating the curvature of the level line under conformal mappings of a circle
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 5-17
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2013_6_a0/
%G ru
%F VTGU_2013_6_a0
I. A. Aleksandrov; S. A. Kopanev. The problem of estimating the curvature of the level line under conformal mappings of a circle. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2013), pp. 5-17. http://geodesic.mathdoc.fr/item/VTGU_2013_6_a0/

[1] Aleksandrov I. A., “Geometricheskie svoistva odnolistnykh funktsii”, Trudy Tomskogo un-ta, 175, Voprosy geometricheskoi teorii funktsii, Vyp. 2, 1964, 29–38 | Zbl

[2] Aleksandrov I. A., Metody geometricheskoi teorii analiticheskikh funktsii, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 220 pp.

[3] Aleksandrov I. A., “Ob otsenke krivizny linii urovnya pri konformnykh otobrazheniyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 3(23), 5–7

[4] Aleksandrov I. A., Prokhorova A. E., “Otsenki krivizny linii urovnya na klasse $\widetilde S_p$”, DAN SSSR, 203:2 (1972), 267–269 | MR | Zbl

[5] Aleksandrov I. A. Chernikov V. V., “Ekstremalnye svoistva zvezdoobraznykh otobrazhenii”, Sib. matem. zhurnal, 4:2 (1963), 23–30

[6] Zmorovich V. A., “O nekotorykh variatsionnykh zadachakh teorii odnolistnykh funktsii”, Ukr. matem. zhurnal, 4:3 (1952), 276–298 | Zbl

[7] Kopanev S. A., “Zametka o krivizne linii urovnya otnositelno konformnogo otobrazheniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 3(23), 34–36

[8] Kopanev S. A., Syrkashev A. N., “Kachestvennyi analiz differentsialno-funktsionalnogo uravneniya dlya odnogo funktsionala”, Issledovaniya po matematicheskomu analizu i algebre: sb., 3, Tomsk, 2001, 125–134

[9] Koritskii G. V., “O krivizne linii urovnya i ikh ortogonalnykh traektorii pri konformnykh otobrazheniyakh”, Matem. sb., 37(79):1 (1955), 103–116 | MR | Zbl

[10] Koritskii G. V., “O krivizne linii urovnya pri odnolistnykh konformnykh otobrazheniyakh”, Dokl. AN, 115:4 (1957), 653–654

[11] Koritskii G. V., “K voprosu o krivizne linii urovnya pri odnolistnykh konformnykh otobrazheniyakh”, Uspekhi matem. nauk, 15:5(95) (1960), 179–182 | MR | Zbl

[12] Koritskii G. V., “K otsenke krivizny linii urovnya pri odnolistnykh konformnykh otobrazheniyakh”, Trudy Tomskogo un-ta, 210, Voprosy geometricheskoi teorii funktsii, Vyp. 6, 1969, 34–36

[13] Martynov Yu. A., “O geometricheskikh svoistvakh dug linii urovnya pri odnolistnykh konformnykh otobrazhenii”, Trudy Tomskogo un-ta, 210, Voprosy geometricheskoi teorii funktsii, Vyp. 6, 1969, 53–61 | MR | Zbl

[14] Miroshnichenko Ya. S., “Ob odnoi zadache teorii odnolistnykh funktsii”, Uchen. zap. Stalinsk. ped. in-ta, 1951, no. 1, 63–75

[15] Miroshnichenko Ya. S., “Uluchshenie granitsy krivizny linii urovnya dlya nekotorykh klassov odnolistnykh funktsii”, Uchen. zap. Stalinsk. ped. in-ta, 1959, no. 5

[16] Miroshnichenko Ya. S., “K voprosu o krivizne linii urovnya”, Trudy Tomskogo un-ta, 210, Voprosy geometricheskoi teorii funktsii, Vyp. 6, 1969, 62–65

[17] Sizhuk P. I., “O nekotorykh geometricheskikh svoistvakh zvezdoobraznykh funktsii s veschestvennymi koeffitsientami”, Trudy Tomskogo un-ta, 238, Voprosy geometricheskoi teorii funktsii, Vyp. 7, 1974, 82–98 | Zbl

[18] Chernikov V. V., “Ob otsenke krivizny linii urovnya v odnom klasse odnolistnykh funktsii”, Matem. zametki, 19:3 (1976), 381–388 | MR | Zbl

[19] Chernikov V. V., “Otsenka krivizny linii urovnya v klassakh $\Sigma$, $\Sigma^p$”, Ekstremalnye zadachi teorii funktsii, Izd-vo Tomskogo universiteta, Tomsk, 1980, 126–129 | MR

[20] Chernikov V. V., “Ob otsenke krivizny linii urovnya v klasse vsekh regulyarnykh odnolistnykh v kruge funktsii”, Sib. matem. zhurnal, 26:2 (1985), 210–213 | MR | Zbl

[21] Chernikov V. V., Arendarchuk M. A., “Ob otsenke krivizny linii urovnya”, Trudy Tomskogo un-ta, 238, Voprosy geometricheskoi teorii funktsii, Vyp. 7, 1974, 118–123 | Zbl

[22] Chernikov V. V., Kuvaev M. R., Kan V. I., “Nekotorye itogi issledovanii po teorii funktsii kompleksnogo peremennogo v Tomskom universitete”, Ekstremalnye zadachi teorii funktsii, Izd-vo Tomskogo universiteta, Tomsk, 1980, 3–41 | MR

[23] Ezrokhi T. G., “O krivizne linii urovnya i ikh ortogonalnykh traektorii v klasse funktsii s ogranichennym vrascheniem”, Ukr. matem. zhurnal, 17:4 (1965), 91–99

[24] Yugai S. M., “Otsenka krivizny obrazov okruzhnostei pri otobrazhenii ikh vypuklymi odnolistnymi v kruge funktsiyami”, Matem. zametki, 53:1 (1993), 133–137 | MR | Zbl

[25] Bieberbach L., Neuere Forschungen im Gebiete der konformen Abbildung, Glasnik hrv. Prirod. Drustva, 33, 1921, 24 pp. | Zbl