Numerical modelling of mechanical behaviour of model brittle porous materials at the mesoscale
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To describe the mechanical response of brittle porous material mesovolumes, the evolutionary approach was applied with considering them as nonlinear dynamic systems. The nonlinear constitutive equations describe damage accumulation and their impact on the degradation of the strength properties of the elastic frame. In the framework of hierarchical modelling, the mesoscale porosity is taken into account explicitly while the smaller pores are taken into consideration integrally as a damage measure. This small scale damage enters in the constitutive equations as dilatancy, including that of the shear nature. Two types of morphology of model porous structures are considered: overlapping spherical pores and overlapping spherical solids. The obtained results of numerical simulation reveal little influence of pore morphology on the characteristics of damage in the frame. The averaged stress-strain diagram appears to be sensitive not only to the value of porosity but also to the pore morphology. The strength limit has a similar dependence.
Keywords: brittle porous materials, stress-strain state, damage, pore morphology.
Mots-clés : fracture, structure effect
@article{VTGU_2013_5_a9,
     author = {I. Yu. Smolin and M. O. Eremin and P. V. Makarov and S. P. Buyakova and S. N. Kul'kov and E. P. Evtushenko},
     title = {Numerical modelling of mechanical behaviour of model brittle porous materials at the mesoscale},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {78--90},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_5_a9/}
}
TY  - JOUR
AU  - I. Yu. Smolin
AU  - M. O. Eremin
AU  - P. V. Makarov
AU  - S. P. Buyakova
AU  - S. N. Kul'kov
AU  - E. P. Evtushenko
TI  - Numerical modelling of mechanical behaviour of model brittle porous materials at the mesoscale
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 78
EP  - 90
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_5_a9/
LA  - ru
ID  - VTGU_2013_5_a9
ER  - 
%0 Journal Article
%A I. Yu. Smolin
%A M. O. Eremin
%A P. V. Makarov
%A S. P. Buyakova
%A S. N. Kul'kov
%A E. P. Evtushenko
%T Numerical modelling of mechanical behaviour of model brittle porous materials at the mesoscale
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 78-90
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2013_5_a9/
%G ru
%F VTGU_2013_5_a9
I. Yu. Smolin; M. O. Eremin; P. V. Makarov; S. P. Buyakova; S. N. Kul'kov; E. P. Evtushenko. Numerical modelling of mechanical behaviour of model brittle porous materials at the mesoscale. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 78-90. http://geodesic.mathdoc.fr/item/VTGU_2013_5_a9/

[1] Bruno G., Efremov A. M., Levandovskyi A. N., Clausen B., “Connecting the macro- and microstrain responses in technical porous ceramics: modeling and experimental validations”, J. Mater. Sci., 46 (2011), 161–173 | DOI

[2] Roberts A. Garboczi E., “Elastic properties of model porous ceramics”, J. Am. Ceram. Soc., 83:12 (2000), 3041–3048 | DOI

[3] Torquato S., “Random Heterogeneous media: microstructure and improved bounds on elastic properties”, Appl. Mech. Rev., 44 (1991), 37–76 | DOI | MR

[4] Kondaurov V. I., Mekhanika i termodinamika nasyschennoi poristoi sredy, MFTI, M., 2007, 310 pp.

[5] Skripnyak E. G., Skripnyak V. A., Kulkov S. S. i dr., “Modelirovanie mekhanicheskogo povedeniya keramicheskikh kompozitov s transformatsionno-uprochnennoi matritsei pri dinamicheskikh vozdeistviyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2(10), 94–101

[6] Skripnyak V. A., Skripnyak E. G., Kozulin A. A. i dr., “Vliyanie porovoi struktury khrupkoi keramiki na razrushenie pri dinamicheskom nagruzhenii”, Izvestiya Tomskogo politekhnicheskogo universiteta, 315:2 (2009), 113–117

[7] Konovalenko Ig. S., Smolin A. Yu., Korostelev S. Yu., Psakhe S. G., “O zavisimosti makroskopicheskikh uprugikh svoistv poristykh sred ot parametrov stokhasticheskogo prostranstvennogo raspredeleniya por”, ZhTF, 79:5 (2009), 155–158

[8] Smolin A. Yu., Konovalenko Ig. S., Kulkov S. N., Psakhe S. G., “Modelirovanie razrusheniya khrupkikh poristykh sred s razlichnoi vnutrennei strukturoi”, Izv. vuzov. Fizika, 49:3 (2006), 70–71

[9] Makarov P. V., “Evolyutsionnaya priroda destruktsii tverdykh tel i sred”, Fizich. mezomekh., 10:3 (2007), 23–38

[10] Makarov P. V., “Matematicheskaya teoriya evolyutsii nagruzhaemykh tverdykh tel i sred”, Fizich. mezomekh., 11:3 (2008), 19–35

[11] Kostandov Yu. A., Makarov P. V., Eremin M. O. i dr., “O razrushenii khrupkikh tel s treschinoi pri szhatii”, Prikladnaya mekhanika, 49:1 (2013), 124–132

[12] Makarov P. V., Eremin M. O., “Model razrusheniya khrupkikh i kvazikhrupkikh materialov i geosred”, Fizich. mezomekh., 16:1 (2013), 5–26

[13] Buyakova S. P., Kulkov S. N., “Fazovyi sostav i osobennosti formirovaniya struktury v nanokristallicheskom $\mathrm{ZrO}_2$”, Rossiiskie nanotekhnologii, 2:1–2 (2007), 119–132

[14] Makarov P. V., Smolin I. Yu., Stefanov Yu. P. i dr., Nelineinaya mekhanika geomaterialov i geosred, Akademich. izd-vo “Geo”, Novosibirsk, 2007, 235 pp.

[15] Garagash I. A., Nikolaevskii V. N., “Neassotsiirovannye zakony techeniya i lokalizatsii plasticheskoi deformatsii”, Uspekhi mekhaniki, 12:1 (1989), 131–183 | MR

[16] Wilkins M. L., Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin–Heidelberg, 1999, 246 pp. | MR | Zbl

[17] Buyakova S. P., Kulkov S. N., Maslovskii V. I., “Struktura, fazovyi sostav i mekhanicheskoe povedenie keramiki na osnove dioksida tsirkoniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Byulleten operativnoi nauchnoi informatsii, 2003, no. 13, 28–34