On homeomorphisms of spaces $I\times[1,\alpha]$ with the Sorgenfrey topology
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 40-44

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a topological classification of spaces $I\times[1,\alpha]$ is presented. Here, $\alpha$ is an arbitrary ordinal and the semi-interval $I=(0,1]$ is equipped with the Sorgenfrey topology. It is proved that the space $I\times[1,\alpha]$ is homeomorphic to the space $I\times[1,\beta]$ if and only if $\alpha\le\beta\alpha\cdot\omega$.
Keywords: line of Sorgenfrey, continuous functions, linear homeomorphisms, interval of ordinals.
@article{VTGU_2013_5_a4,
     author = {N. N. Trofimenko and T. E. Khmyleva},
     title = {On homeomorphisms of spaces $I\times[1,\alpha]$ with the {Sorgenfrey} topology},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {40--44},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_5_a4/}
}
TY  - JOUR
AU  - N. N. Trofimenko
AU  - T. E. Khmyleva
TI  - On homeomorphisms of spaces $I\times[1,\alpha]$ with the Sorgenfrey topology
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 40
EP  - 44
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_5_a4/
LA  - ru
ID  - VTGU_2013_5_a4
ER  - 
%0 Journal Article
%A N. N. Trofimenko
%A T. E. Khmyleva
%T On homeomorphisms of spaces $I\times[1,\alpha]$ with the Sorgenfrey topology
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 40-44
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2013_5_a4/
%G ru
%F VTGU_2013_5_a4
N. N. Trofimenko; T. E. Khmyleva. On homeomorphisms of spaces $I\times[1,\alpha]$ with the Sorgenfrey topology. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 40-44. http://geodesic.mathdoc.fr/item/VTGU_2013_5_a4/