@article{VTGU_2013_5_a3,
author = {E. A. Timoshenko},
title = {Purely transcendental extensions of the field of rational numbers as base fields of csp-rings},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {30--39},
year = {2013},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_5_a3/}
}
TY - JOUR AU - E. A. Timoshenko TI - Purely transcendental extensions of the field of rational numbers as base fields of csp-rings JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 30 EP - 39 IS - 5 UR - http://geodesic.mathdoc.fr/item/VTGU_2013_5_a3/ LA - ru ID - VTGU_2013_5_a3 ER -
%0 Journal Article %A E. A. Timoshenko %T Purely transcendental extensions of the field of rational numbers as base fields of csp-rings %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 30-39 %N 5 %U http://geodesic.mathdoc.fr/item/VTGU_2013_5_a3/ %G ru %F VTGU_2013_5_a3
E. A. Timoshenko. Purely transcendental extensions of the field of rational numbers as base fields of csp-rings. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 30-39. http://geodesic.mathdoc.fr/item/VTGU_2013_5_a3/
[1] Fomin A. A., “Some mixed Abelian groups as modules over the ring of pseudo-rational numbers”, Abelian Groups and Modules, Birkhauser, Basel et al., 1999, 87–100 | DOI | MR | Zbl
[2] Krylov P. A., Pakhomova E. G., Podberezina E. I., “Ob odnom klasse smeshannykh abelevykh grupp”, Vestnik TGU, 2000, no. 269, 47–51
[3] Timoshenko E. A., “O bazovykh polyakh csp-kolets”, Algebra i logika, 49:4 (2010), 555–565 | MR | Zbl
[4] Blass A., “Combinatorial cardinal characteristics of the continuum”, Handbook of Set Theory, v. 1, Springer, Dordrecht et al., 2010, 395–489 | DOI | MR | Zbl
[5] Van Douwen E. K., “The integers and topology”, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam et al., 1984, 111–167 | MR
[6] Bartoszyński T., Judah H., Set Theory: on the Structure of the Real Line, A. K. Peters, Wellesley, 1995 | MR | Zbl