Numerical model of river–lake interaction in the case of a spring thermal bar in Kamloops lake
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 102-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to modeling hydrodynamic processes related to the spring thermal bar in Kamloops Lake by the second-order numerical method. The results of simulations agree with the studies made by other authors and in-situ observations. An important feature of the numerical technique is to use the SIMPLED procedure (a modification of the SIMPLE algorithm of Patankar and Spalding) for harmonization of pressure and velocity fields.
Keywords: thermal bar, mathematical model, temperature of maximum density, numerical experiment, Kamloops Lake.
Mots-clés : Boussinesq approximation
@article{VTGU_2013_5_a11,
     author = {B. O. Tsydenov and A. V. Starchenko},
     title = {Numerical model of river{\textendash}lake interaction in the case of a~spring thermal bar in {Kamloops} lake},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {102--115},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_5_a11/}
}
TY  - JOUR
AU  - B. O. Tsydenov
AU  - A. V. Starchenko
TI  - Numerical model of river–lake interaction in the case of a spring thermal bar in Kamloops lake
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 102
EP  - 115
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_5_a11/
LA  - ru
ID  - VTGU_2013_5_a11
ER  - 
%0 Journal Article
%A B. O. Tsydenov
%A A. V. Starchenko
%T Numerical model of river–lake interaction in the case of a spring thermal bar in Kamloops lake
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 102-115
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2013_5_a11/
%G ru
%F VTGU_2013_5_a11
B. O. Tsydenov; A. V. Starchenko. Numerical model of river–lake interaction in the case of a spring thermal bar in Kamloops lake. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 102-115. http://geodesic.mathdoc.fr/item/VTGU_2013_5_a11/

[1] Forel F. A., “La congélation des lacs Suisses et savoyards pendant l'hiver 1879–1880. Lac Léman”, L'Écho des Alpes, 1880, no. 3, 149–161

[2] Tikhomirov A. I., “O termicheskom bare v Yakimvarskom zalive Ladozhskogo ozera”, Izv. VGO, 91:5 (1959), 424–438

[3] Rodgers G. K., “A Note on thermocline development and the thermal bar in Lake Ontario”, Symposium of Garda, Int. Assoc. Scientific Hydrology, 1966, no. 1(70), 401–405

[4] Hubbard D. W., Spain J. D., “The structure of the early spring thermal bar in Lake Superior”, Proc. 16th Conf. Great Lakes Res., Int. Assoc. Great Lakes Res., 1973, 735–742

[5] Moll R. A., Brahce M., “Seasonal and spatial distribution of bacteria, Chlorophyll and nutrients in nearshore Lake Michigan”, J. Great Lakes Res., 12:1 (1986), 52–62 | DOI

[6] Bolgrien D. W., Granin N. G., Levin L., “Surface temperature dynamics of Lake Baikal observed from AVHRR images”, Photogrammetric Engineering and Remote Sensing, 61:2 (1995), 211–216

[7] Carmack E. C., “Combined influence of inflow and lake temperatures on spring circulation in a riverine lake”, J. Phys. Oceanogr., 9:2 (1979), 422–434 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Carmack E. C., Gray C. B. J., Pharo C. H., Daley R. J., “Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia”, Limnol. Oceanogr., 24:4 (1979), 634–644 | DOI

[9] Wiegand R. C., Carmack E. C., “Some types of temperature inversion encountered in a freshwater lake with short residence time”, Limnol. Oceanogr., 26:3 (1981), 565–571 | DOI

[10] Killworth P. D., Carmack E. C., “A filling-box model of river-dominated lakes”, Limnol. Oceanogr., 24:2 (1979), 201–217 | DOI

[11] Holland P. R., Kay A., Botte V., “Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake”, J. Mar. Sys., 43 (2003), 61–81 | DOI

[12] Tsvetova E. A., “Chislennaya model termobara v ozere Baikal”, Meteorologiya i gidrologiya, 1997, no. 9, 58–68

[13] Chen C. T., Millero F. G., “Precise thermodynamic properties for natural waters covering only limnologies range”, Limnol. Oceanogr., 31:3 (1986), 657–662 | DOI

[14] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.

[15] Smirnov E. M., Zaitsev D. K., “Metod konechnykh ob'emov v prilozhenii k zadacham gidrogazodinamiki i teploobmena v oblastyakh slozhnoi geometrii”, Nauchno-tekhnicheskie vedomosti (SPb.), 2004, no. 2(36), 70–81

[16] Leonard B., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comput. Meth. Appl. Mech. Eng., 19 (1979), 59–98 | DOI | Zbl

[17] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Nauka, M., 1995, 288 pp. | MR

[18] Tsydenov B. O., “Chislennoe modelirovanie konvektivnykh techenii v kaverne”, Perspektivy razvitiya fundamentalnykh nauk, Tr. VI Mezhdunar. konf., v. 2, Izd-vo TPU, Tomsk, 2009, 673–676

[19] Tsydenov B. O., Starchenko A. V., “Chislennoe modelirovanie effekta termobara v ozere Baikal v period vesenne-letnego progrevaniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 120–129

[20] Polezhaev V. I., Bune A. V., Verezub N. A. i dr., Matematicheskoe modelirovanie konvektivnogo teplomassoobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987, 271 pp. | MR | Zbl