On the sequential estimation of parameters in a continuous autoregression model
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 12-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we propose a sequential procedure for estimating unknown parameters for a stable autoregressive continuous time processes. The procedure uses a special rule to stop observations and is based on the classical least squares (LS) estimates but, in contrast, provides control for the mean-square accuracy of estimates. Formulas for the asymptotic duration of observations with an increase in the mean-square accuracy of estimates are obtained. The results can be applied in a wide range of problems such as system identification, adaptive forecasting, and estimation of parameters of spectra of continuous time Gaussian processes.
Keywords: fixed-accuracy estimation, autoregressive process, gaussian process with rational density, sequential estimation, stopping time.
@article{VTGU_2013_5_a1,
     author = {T. V. Emel'yanova and V. V. Konev},
     title = {On the sequential estimation of parameters in a~continuous autoregression model},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {12--25},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_5_a1/}
}
TY  - JOUR
AU  - T. V. Emel'yanova
AU  - V. V. Konev
TI  - On the sequential estimation of parameters in a continuous autoregression model
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 12
EP  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_5_a1/
LA  - ru
ID  - VTGU_2013_5_a1
ER  - 
%0 Journal Article
%A T. V. Emel'yanova
%A V. V. Konev
%T On the sequential estimation of parameters in a continuous autoregression model
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 12-25
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2013_5_a1/
%G ru
%F VTGU_2013_5_a1
T. V. Emel'yanova; V. V. Konev. On the sequential estimation of parameters in a continuous autoregression model. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2013), pp. 12-25. http://geodesic.mathdoc.fr/item/VTGU_2013_5_a1/

[1] Arato M., Lineinye stokhasticheskie sistemy s postoyannymi koeffitsientami. Statisticheskii podkhod, Nauka, M., 1989 | MR | Zbl

[2] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR

[3] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[4] Yaglom A. M., “Vvedenie v teoriyu statsionarnykh sluchainykh funktsii”, UMN, 7:5 (1955), 3–168 | MR | Zbl

[5] Taraskin A. F., “Ob asimptoticheskoi normalnosti stokhasticheskikh integralov v otsenkakh koeffitsienta perenosa diffuzionnogo protsessa”, Mat. fizika, 8, Naukova dumka, Kiev, 1970, 149–163 | MR

[6] Taraskin A. F., “Ob asimptoticheskoi normalnosti nekotorykh stokhasticheskikh integralov i otsenkakh parametrov perenosa mnogomernogo diffuzionnogo protsessa”, Teor. veroyatn. i mat. statistika, 2, Naukova dumka, Kiev, 1970, 205–220 | MR

[7] Novikov A. A., “Posledovatelnoe otsenivanie parametrov diffuzionnykh protsessov”, Teor. veroyatn. i ee primen., 16:2 (1971), 394–396 | Zbl

[8] Novikov A. A., “Posledovatelnoe otsenivanie parametrov protsessov diffuzionnogo tipa”, Mat. zametki, 12:5 (1972), 627–638 | Zbl

[9] Arato M., Kolmogorov A. N., Sinai Ya. G., “Ob otsenkakh parametrov kompleksnogo statsionarnogo gaussovskogo markovskogo protsessa”, DAN SSSR, 156:4 (1962), 747–750

[10] Konev V. V., Pergamenshchikov S. M., “Sequential Estimation of the Parameters in a Trigonometric Regression Model with the Gaussian Coloured Noise”, Statistical Inference for Stochastic Processes, 6 (2003), 215–235 | DOI | MR | Zbl

[11] Konev V. V. Pergamenschikov S. M., “Posledovatelnoe otsenivanie parametrov lineinykh neustoichivykh stokhasticheskikh sistem s garantirovannoi srednekvadraticheskoi tochnostyu”, Problemy peredachi informatsii, 28:4 (1992), 35–48 | MR | Zbl

[12] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR

[13] Kabanov Yu. M., Pergamenshchikov S. M., Two Scale Stochastic Systems: Asymptotic Analysis and Control, Springer, Berlin–New York, 2002 | MR | Zbl