On abelian groups with central squares of commutators of endomorphisms
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 54-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe divisible, completely decomposable, vector, and separable torsion free groups for which the squares of commutators of their endomorphisms are central in endomorphism rings of these groups.
Keywords: endomorphism ring, commutator of endomorphisms
Mots-clés : $E$-commutant.
@article{VTGU_2013_4_a6,
     author = {A. R. Chekhlov and Ml. V. Agafontseva},
     title = {On abelian groups with central squares of commutators of endomorphisms},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {54--59},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_4_a6/}
}
TY  - JOUR
AU  - A. R. Chekhlov
AU  - Ml. V. Agafontseva
TI  - On abelian groups with central squares of commutators of endomorphisms
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 54
EP  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_4_a6/
LA  - ru
ID  - VTGU_2013_4_a6
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%A Ml. V. Agafontseva
%T On abelian groups with central squares of commutators of endomorphisms
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 54-59
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2013_4_a6/
%G ru
%F VTGU_2013_4_a6
A. R. Chekhlov; Ml. V. Agafontseva. On abelian groups with central squares of commutators of endomorphisms. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 54-59. http://geodesic.mathdoc.fr/item/VTGU_2013_4_a6/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[3] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986 | MR

[4] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestva”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Fund. napravleniya, 18, VINITI AN SSSR, M., 1987, 117–240

[5] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[6] Rowen L. H., Polynomial Identities in Ring Theory, Acad. Press, New York, 1980 | MR | Zbl

[7] Drensky V., Free Algebras and PI-Algebras, Springer, 2000 | MR | Zbl

[8] Hall M., “Projective planes”, Trans. Amer. Math. Soc., 54 (1943), 229–277 | DOI | MR | Zbl

[9] Kaplansky I., “Rings with polynomial identity”, Bull. Amer. Math. Soc., 54 (1948), 575–580 | DOI | MR | Zbl

[10] Maltsev A. I., “Ob algebrakh s tozhdestvennymi opredelyayuschimi sootnosheniyami”, Mat. sb., 26 (1950), 19–23

[11] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43:2 (1957), 277–283 | Zbl

[12] Olshanskii A. Yu., “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN SSSR. Ser. matem., 34:2 (1970), 376–384

[13] Braun A., “The nilpotency of the radical in a finitely generated $PI$-rings”, J. Algebra, 89 (1984), 375–396 | DOI | MR | Zbl

[14] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. vuzov. Matematika, 1985, no. 11, 3–47 | MR | Zbl

[15] Belov A. Ya., “Assotsiativnykh $PI$-algebr, sovpadayuschikh so svoim kommutantom, ne suschestvuet”, Sib. matem. zhurn., 44:6 (2003), 1239–1254 | MR | Zbl

[16] Beidar K. I., Mikhalev A. V., Chebotar M. A., “Funktsionalnye tozhdestva v koltsakh i ikh prilozheniya”, UMN, 59:3 (2004), 3–30 | DOI | MR | Zbl

[17] Adyan S. I., “Problema Bernsaida i svyazannye s nei voprosy”, UMN, 65:5 (2010), 5–60 | DOI | MR | Zbl

[18] Chekhlov A. R., “Ob abelevykh gruppakh s normalnym koltsom endomorfizmov”, Algebra i logika, 48:4 (2009), 520–539 | MR | Zbl

[19] Chekhlov A. R., “O skobke Li endomorfizmov abelevykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 78–84

[20] Chekhlov A. R., “E-nilpotentnye i E-razreshimye abelevy gruppy klassa 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 1(9), 59–71 | MR

[21] Chekhlov A. R., “Nekotorye primery E-razreshimykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 3(11), 69–76

[22] Chekhlov A. R., “E-razreshimye moduli”, Fundament. i prikl. matem., 16:7 (2010), 221–236 | MR

[23] Chekhlov A. R., “O skobke Li endomorfizmov abelevykh grupp, 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 55–60

[24] Chekhlov A. R., “E-engelevy abelevy gruppy stupeni 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 1(17), 54–60

[25] Chekhlov A. R., “O nekotorykh klassakh nilgrupp”, Matem. zametki, 91:2 (2012), 297–304 | DOI | MR | Zbl

[26] Chekhlov A. R., “Ob abelevykh gruppakh, blizkikh k E-razreshimym”, Fundament. i prikl. matem., 17:8 (2011/2012), 183–219

[27] Chekhlov A. R., “O proektivnom kommutante abelevykh grupp”, Sib. matem. zhurn., 53:2 (2012), 451–464 | MR | Zbl

[28] Chekhlov A. R., “Ob abelevykh gruppakh s nilpotentnymi kommutatorami endomorfizmov”, Izv. vuzov. Matematika, 2012, no. 10, 60–73 | Zbl

[29] Chekhlov A. R., “O proektivno razreshimykh abelevykh gruppakh”, Sib. matem. zhurn., 53:5 (2012), 1157–1165 | MR | Zbl

[30] Chekhlov A. R., “O svoistvakh tsentralno i kommutatorno invariantnykh podgrupp abelevykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 2(6), 85–99

[31] Chekhlov A. R., “Svoistva podgrupp abelevykh grupp, invariantnykh otnositelno proektsii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 1(2), 76–82

[32] Chekhlov A. R., “O podgruppakh abelevykh grupp, invariantnykh otnositelno proektsii”, Fundament. i prikl. matem., 14:6 (2008), 211–218

[33] Chekhlov A. R., “O proektivno invariantnykh podgruppakh abelevykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2009, no. 1(5), 31–36

[34] Chekhlov A. R., “Separabelnye i vektornye gruppy, proektivno invariantnye podgruppy kotorykh vpolne invariantny”, Sib. matem. zhurn., 50:4 (2009), 942–953 | MR | Zbl

[35] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzheniya”, Diskr. matem., 25:1 (2013), 144–151 | DOI | Zbl

[36] Chekhlov A. R., “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | DOI | MR | Zbl

[37] Danchev P. V., “Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded”, Vladikavk. matem. zhurn., 11:3 (2009), 8–9 | MR

[38] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, 1977

[39] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2007

[40] Chekhlov A. R., “Slabo tranzitivnye E-engelevy abelevy gruppy bez krucheniya”, Matem. zametki, 94:4 (2013), 616–623 | DOI