The development of an approach for the solution of the fourth degree algebraic equation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 29-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Connections between roots of an equation and its resolvent are deduced. Statements establishing the membership of roots to the set of real numbers or to the set of complex numbers with nonzero imaginary parts without solving the equation are proposed. Formulas for calculating the components of equation roots are deduced.
Mots-clés : equation, solution, table.
@article{VTGU_2013_4_a3,
     author = {Yu. A. Nesmeev},
     title = {The development of an approach for the solution of the fourth degree algebraic equation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {29--38},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_4_a3/}
}
TY  - JOUR
AU  - Yu. A. Nesmeev
TI  - The development of an approach for the solution of the fourth degree algebraic equation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 29
EP  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_4_a3/
LA  - ru
ID  - VTGU_2013_4_a3
ER  - 
%0 Journal Article
%A Yu. A. Nesmeev
%T The development of an approach for the solution of the fourth degree algebraic equation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 29-38
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2013_4_a3/
%G ru
%F VTGU_2013_4_a3
Yu. A. Nesmeev. The development of an approach for the solution of the fourth degree algebraic equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 29-38. http://geodesic.mathdoc.fr/item/VTGU_2013_4_a3/

[1] Bukin A. D., Kinematicheskaya rekonstruktsiya dvukhchastichnykh sobytii, Preprint IYaF 2006-042, IYaF SO RAN, Novosibirsk, 2006, 22 pp.

[2] Fedorova N. A., “Reshenie ploskoi zadachi uprugoi sredy, armirovannoi tremya semeistvami volokon”, Vychislitelnye tekhnologii, 10, Spets. vypusk (2005), 90–99 | Zbl

[3] Fedorova N. A., “Reshenie ploskoi zadachi dlya metallokompozita, armirovannogo semeistvom krivolineinykh volokon”, Matematicheskoe modelirovanie i kraevye zadachi, v. 1, 2007, 258–261

[4] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1970, 720 pp. | MR

[5] Podvysotskii V., Obschii analiticheskii metod resheniya algebraicheskikh uravnenii 4-i stepeni, http://www.n-t.org/tp/ns/oam/htm

[6] Nesmeev Yu. A., “Ob odnom podkhode k resheniyu algebraicheskikh uravnenii 3-i i 4-i stepenei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 1(13), 26–30

[7] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979, 832 pp.