Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 111-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of modeling nanoindentation of hardened coating on a titanium substrate by movable cellular automaton method in the 3D formulation are presented. The peculiarities of the method for describing elastic-plastic behavior of the materials are described. Comparing of the modeling results with the experimental data confirms the proposed model validation.
Keywords: nanoindentation, modeling, movable cellular automaton method, nanostructured titanium, hardening biocompatible coatings.
@article{VTGU_2013_4_a12,
     author = {A. Yu. Smolin and G. M. Anikeeva and E. V. Shilko and S. G. Psakhie},
     title = {Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {111--125},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_4_a12/}
}
TY  - JOUR
AU  - A. Yu. Smolin
AU  - G. M. Anikeeva
AU  - E. V. Shilko
AU  - S. G. Psakhie
TI  - Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 111
EP  - 125
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_4_a12/
LA  - ru
ID  - VTGU_2013_4_a12
ER  - 
%0 Journal Article
%A A. Yu. Smolin
%A G. M. Anikeeva
%A E. V. Shilko
%A S. G. Psakhie
%T Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 111-125
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2013_4_a12/
%G ru
%F VTGU_2013_4_a12
A. Yu. Smolin; G. M. Anikeeva; E. V. Shilko; S. G. Psakhie. Modeling deformation of nanostructured coatings on a titanium substrate under nanoindentation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 111-125. http://geodesic.mathdoc.fr/item/VTGU_2013_4_a12/

[1] Shtansky D. V., Kiryukhantsev-Korneev Ph. V., Bashkova I. A., et al., “Multicomponent nanostructured films for various tribological applications”, Int. J. Refractory Metals Hard Materials, 28 (2010), 32–39 | DOI

[2] Shtansky D. V., Gloushankova N. A., Bashkova I. A., et al., “Multifunctional biocompatible nanostructured coatings for load-bearing implants”, Surface and Coatings Technology, 201 (2006), 4111–4118 | DOI

[3] Shtansky D. V., Levashov E. A., Glushankova N. A., et al., “Structure and properties of $\mathrm{CaO}$- and $\mathrm{ZrO_2}$-doped $\mathrm{TiC_xN_y}$ coatings for biomedical applications”, Surface and Coatings Technology, 182 (2004), 101–111 | DOI

[4] Levashov E. A., Petrzhik M. I., Tyurina M. Ya. i dr., “Mnogosloinye nanostrukturnye teplovydelyayuschie pokrytiya. Poluchenie i attestatsiya mekhanicheskikh i tribologicheskikh svoistv”, Metallurg, 2010, no. 9, 66–74

[5] Golovin I. Yu., Nanoindentirovanie i ego vozmozhnosti, Mashinostroenie, M., 2009, 316 pp.

[6] Oliver W. C., Pharr G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Materials Research, 1992, no. 7, 1564–1583 | DOI

[7] Shugurov A. R., Panin A. V., Oskomov K. V., “Osobennosti opredeleniya mekhanicheskikh kharakteristik tonkikh plenok metodom nanoindentirovaniya”, FTT, 5:6 (2008), 1007–1012

[8] Venkatesh T. A., Van Vliet K. J., Giannakopoulos A. E., Suresh S., “Determination of elastoplastic properties by instrumented sharp indentation: guidelines for property extraction”, Scripta Materialia, 42:9 (2000), 833–839 | DOI

[9] Dao M., Chollacoop N., Van Vliet K. J., et al., “Computational modeling of the forward and reverse problems in instrumented sharp indentation”, Acta Materialia, 49 (2001), 3899–3918 | DOI

[10] Bucaille J. L., Stauss S., Felder E., Michler J., “Determination of plastic properties of metals by instrumented indentation using different sharp indenters”, Acta Materialia, 51 (2003), 1663–1678 | DOI

[11] Ogasawara N., Chiba N., Chen X., “Measuring the plastic properties of bulk materials by single indentation test”, Scripta Materialia, 54 (2006), 65–70 | DOI

[12] Sreeranganathan A., Gokhale A., Tamirisakandala S., “Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation”, Scripta Materialia, 58:2 (2008), 114–117 | DOI

[13] Zimmerman J. A., Kelchner C. L., Klein P. A. et al., “Surface step effects on nanoindentation”, Physical Review Letters, 87 (2001), 165507–165511 | DOI

[14] Saraev D., Miller R. E., “Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings”, Acta Materialia, 54 (2006), 33–45 | DOI

[15] Mei J., Li J., Ni Y., Wang H., “Multiscale simulation of indentation, retraction and fracture processes of nanocontact”, Nanoscale Research Letters, 5 (2010), 692–700 | DOI

[16] Psakhe S. G., Ostermaier G. P., Dmitriev A. I. i dr., “Metod podvizhnykh kletochnykh avtomatov kak novoe napravlenie diskretnoi vychislitelnoi mekhaniki. I: Teoreticheskoe opisanie”, Fizicheskaya mezomekhanika, 3:2 (2000), 5–13

[17] Popov V. L., Psakhe S. G., “Teoreticheskie osnovy modelirovaniya uprugoplasticheskikh sred metodom podvizhnykh kletochnykh avtomatov. I: Odnorodnye sredy”, Fizicheskaya mezomekhanika, 4:1 (2001), 15–25

[18] Psakhie S. G., Horie Y., Ostermeyer G.-P., et al., “Movable cellular automata method for simulating materials with mesostructure”, Theoretical and Applied Fracture Mechanics, 37 (2001), 311–334 | DOI

[19] Smolin A. Yu., Roman N. V., Dobrynin S. A., Psakhe S. G., “O vraschatelnom dvizhenii v metode podvizhnykh kletochnykh avtomatov”, Fizicheskaya mezomekhanika, 12:2 (2009), 17–22

[20] Psakhie S. G., Horie Y., Shilko E. V., et al., “Development of discrete element approach to modeling heterogeneous elastic-plastic materials and media”, Int. J. Terraspace Science and Engineering, 3:1 (2011), 93–125

[21] Levashov E. A., Petrzhik M. I., Kiryukhantsev-Korneev F. V. i dr., “Struktura i mekhanicheskoe povedenie pri indentirovanii biosovmestimykh nanostrukturirovannykh titanovykh splavov i pokrytii”, Metallurg, 2012, no. 5, 79–89

[22] Levashov E. A., Petrzhik M. I., Shtansky D. V., et al., “Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation”, Materials Science and Engineering: A, 570 (2013), 51–62 | DOI

[23] Cundall P. A., Strack O. D. L., “A discrete numerical model for granular assemblies”, Geotechnique, 29:1 (1979), 47–65 | DOI

[24] Jing L., Stephansson O., Fundamentals of Discrete Element Method for Rock Engineering: Theory and Applications, Elsevier, Oxford, 2007, 562 pp. | Zbl

[25] Sibille L., Nicot F., Donze F. V., Darve F., “Material instability in granular assemblies from fundamentally different models”, Int. J. Numerical and Analytical Methods in Geomechanics, 31:3 (2007), 457–481 | DOI | Zbl

[26] Martin C. L., Bouvard D., “Study of the cold compaction of composite powders by the discrete element method”, Acta Materialia, 51:2 (2003), 373–386 | DOI

[27] Potyondy D. O., Cundall P. A., “A bonded-particle model for rock”, Int. J. Rock Mechanics and Mining Sciences, 41:8 (2004), 1329–1364 | DOI

[28] Daw M. S., Foiles S. M., Baskes M. I., “The embedded-atom method: A review of theory and applications”, Materials Science Reports, 9:7–8 (1993), 251–310 | DOI

[29] Psakhe S. G., Smolin A. Yu., Stefanov Yu. P. i dr., “Modelirovanie povedeniya slozhnykh sred na osnove kombinirovannogo diskretno-kontinualnogo podkhoda”, Fizicheskaya mezomekhanika, 6:6 (2003), 11–21

[30] Wilkins M. L., Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin, 1999, 246 pp. | MR

[31] Uilkins M. L., “Raschet uprugoplasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263

[32] Psakhie S. G., Smolin A. Yu., Shilko E. V., et al., “Modeling nanoindentation of $\mathrm{TiCCaPON}$ coating on $\mathrm{Ti}$ substrate using movable cellular automaton method”, Computational Materials Science, 2013 (to appear) | DOI

[33] Muliana A., Steward R., Haj-ali R. M., Saxena A., “Artificial neural network and finite element modeling of nanoindentation tests”, Metallurgical and Materials Transactions A, 33 (2002), 1939–1948 | DOI

[34] Feng Z.-Q., Zei M., Joli P., “An elasto-plastic contact model applied to nanoindentation”, Computational Materials Science, 38 (2007), 807–813 | DOI