$\mathrm{Fibonacci}(n)$ modulo $n$ sequence
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 15-23
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the behavior of the $\mathrm{Fibonacci}(n)\mod n$ sequence and pay attention to some subsequences: $n$ runs through the set of prime numbers and the cases with $n = qp$, where $p$ runs through the set of prime numbers and $q$ is a fixed natural number. The behavior of the sequence is investigated using the Mathematica system. Some hypotheses are formulated and proved.
Keywords:
Fibonacci sequence, remainders, Mathematica.
Mots-clés : congruence relation
Mots-clés : congruence relation
@article{VTGU_2013_4_a1,
author = {V. M. Zyuz'kov},
title = {$\mathrm{Fibonacci}(n)$ modulo $n$ sequence},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--23},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_4_a1/}
}
V. M. Zyuz'kov. $\mathrm{Fibonacci}(n)$ modulo $n$ sequence. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 15-23. http://geodesic.mathdoc.fr/item/VTGU_2013_4_a1/
[1] Wolfram S., A New Kind of Science, Wolfram Media, 2002, 1197 pp. | MR | Zbl
[2] Sloan's On-Line Encyclopedia of Integer Sequences http://oeis.org/
[3] Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley Sons, Inc., 2001 | MR
[4] Kramer J., Hoggatt V. E., Jr., “Special cases of Fibonacci periodicity”, The Fibonacci Quarterly, 10:5, Nov. (1972), 519–522 | MR | Zbl
[5] Vorobev N. N., Chisla Fibonachchi, Nauka, M., 1978, 144 pp. | MR
[6] Desmond J. E., “Problem B-182”, The Fibonacci Quarterly, 20:1, Feb. (1970), 96