k-full transitivity of homogeneously decomposable groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we introduce the concept of $k$-full transitivity for torsion free abelian groups. A complete description of $k$-fully transitive separable and homogeneously decomposable groups, as well as of $k$-fully transitive completely decomposable groups is presented.
Keywords: $k$-full transitivity, homogeneously decomposable group, separable group
Mots-clés : endomorphism.
@article{VTGU_2013_4_a0,
     author = {S. Y. Grinshpon and M. I. Rogozinsky},
     title = {k-full transitivity of homogeneously decomposable groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_4_a0/}
}
TY  - JOUR
AU  - S. Y. Grinshpon
AU  - M. I. Rogozinsky
TI  - k-full transitivity of homogeneously decomposable groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 5
EP  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_4_a0/
LA  - ru
ID  - VTGU_2013_4_a0
ER  - 
%0 Journal Article
%A S. Y. Grinshpon
%A M. I. Rogozinsky
%T k-full transitivity of homogeneously decomposable groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 5-14
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2013_4_a0/
%G ru
%F VTGU_2013_4_a0
S. Y. Grinshpon; M. I. Rogozinsky. k-full transitivity of homogeneously decomposable groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2013), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2013_4_a0/

[1] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann. Arbor, 1954 | MR | Zbl

[2] Krylov P. A., “O vpolne kharakteristicheskikh podgruppakh abelevykh grupp bez krucheniya”, Sb. aspirantskikh rabot po matem., Tomsk, 1973, 15–20

[3] Grinshpon S. Ya., Misyakov V. M., “O vpolne tranzitivnykh abelevykh gruppakh”, Abelevy gruppy i moduli, Tomsk, 1986, 12–27

[4] Grinshpon S. Ya., “Vpolne tranzitivnye odnorodno separabelnye gruppy”, Matem. zametki, 1997, no. 62, 471–474 | DOI | MR | Zbl

[5] Carroll D., “Multiple transitivity in abelian groups”, Arch. Math., 63 (1994), 9–16 | DOI | MR | Zbl

[6] Rogozinskii M. I., “O $k$-vpolne tranzitivnosti vpolne razlozhimykh abelevykh grupp bez krucheniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 4 (20), 25–35

[7] Rogozinskii M. I., “$k$-vpolne tranzitivnye abelevy gruppy bez krucheniya”, Sovremennye problemy matematiki i mekhaniki, Materialy II Vseros. molod. nauch. konf. (Tomsk, 2011), 41–44

[8] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[9] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundament. i prikl. matem., 8:2 (2002), 407–473 | MR | Zbl

[10] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[11] Engel K., Sperner Theory, Camb. Univ. Press, 1997 | MR

[12] Dobrusin Yu. B., “O prodolzheniyakh chastichnykh endomorfizmov abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 4, Tomsk, 1986, 36–53

[13] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. matem. zhurn., 24:2 (1983), 77–84 | MR | Zbl

[14] Krylov P. A., “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika, 29:5 (1990), 549–560 | MR | Zbl

[15] Krylov P. A., Chekhlov A. R., “Abelevy gruppy bez krucheniya s bolshim chislom endomorfizmov”, Tr. IMM UrO RAN, 7, no. 2, 2001, 194–207

[16] Chekhlov A. R., “O razlozhimykh vpolne tranzitivnykh gruppakh bez krucheniya”, Sib. matem. zhurn., 42:3 (2001), 714–719 | MR | Zbl

[17] Chekhlov A. R., “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | DOI | MR | Zbl