Stability of the Couette flow of a vibrationally nonequilibrium of molecular gas. Energy approach
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 76-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variational problem of determining the critical Reynolds number of the laminar–turbulent transition is numerically solved in the context of the energy theory of hydrodynamic stability. Stability of various modes in the Couette flow of a vibrationally excited molecular gas is estimated by the method of collocations. The flow is described by a system of the equations of two-temperature aerodynamics. The transport coefficients depend on flow temperature. The calculations have shown that the critical Reynolds numbers depend on the Mach number, bulk viscosity, and vibrational relaxation time. In the realistic range of flow parameters for a diatomic gas, the minimum critical Reynolds numbers are reached on modes of streamwise disturbances and increase approximately by a factor of 2,5 as the flow parameters increase.
Keywords: energy theory, hydrodynamic stability, vibrational relaxation, equations of two-temperature aerodynamics, critical Reynolds number.
@article{VTGU_2013_3_a9,
     author = {I. V. Ershov},
     title = {Stability of the {Couette} flow of a vibrationally nonequilibrium of molecular~gas. {Energy} approach},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {76--88},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a9/}
}
TY  - JOUR
AU  - I. V. Ershov
TI  - Stability of the Couette flow of a vibrationally nonequilibrium of molecular gas. Energy approach
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 76
EP  - 88
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a9/
LA  - ru
ID  - VTGU_2013_3_a9
ER  - 
%0 Journal Article
%A I. V. Ershov
%T Stability of the Couette flow of a vibrationally nonequilibrium of molecular gas. Energy approach
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 76-88
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2013_3_a9/
%G ru
%F VTGU_2013_3_a9
I. V. Ershov. Stability of the Couette flow of a vibrationally nonequilibrium of molecular gas. Energy approach. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 76-88. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a9/

[1] Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reinoldsa v techenii Kuetta kolebatelno-neravnovesnogo molekulyarnogo gaza”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2, 99–112 | MR

[2] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, IL, M., 1960, 510 pp. | MR

[3] Zhdanov V. M., Alievskii M. E., Protsessy perenosa i relaksatsii v molekulyarnykh gazakh, Nauka, M., 1989, 336 pp. | Zbl

[4] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyuschikh gazov, Izd-vo S.-Peterburskogo un-ta, SPb., 2003, 272 pp.

[5] Gaponov S. A., Maslov A. A., Razvitie vozmuschenii v szhimaemykh potokakh, Nauka. Sib. otd-nie, Novosibirsk, 1980, 145 pp. | MR | Zbl

[6] Grigorev Yu. N., Ershov I. V., Ershova E. E., “Vliyanie kolebatelnoi relaksatsii na pulsatsionnuyu aktivnost v techeniyakh vozbuzhdennogo dvukhatomnogo gaza”, PMTF, 45:3 (2004), 15–23 | Zbl

[7] Grigorev Yu. N., Ershov I. V., “Lineinaya ustoichivost nevyazkogo sdvigovogo techeniya kolebatelno vozbuzhdennogo dvukhatomnogo gaza”, PMM, 45:4 (2011), 581–593 | MR

[8] Grigorev Yu. N., Ershov I. V., “Ustoichivost techenii kolebatelno vozbuzhdennykh gazov. Energeticheskii podkhod”, Vestn. Nizhegorodskogo gos. un-ta im. N. I. Lobachevskogo. MZhG, 2011, no. 4 (3), 735–737 | MR

[9] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods in fluid dynamics, Springer series in Computational Physics, Springer Verlag, Berlin, 1988, 564 pp. | MR | Zbl

[10] Trefethen L. N., Spectral Methods in Matlab, Soc. for Industr. and Appl. Math., Philadelphia, 2000, 160 pp. | MR

[11] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1970, 720 pp. | MR

[12] Moler C. B., Stewart G. W., “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10:2 (1973), 241–256 | DOI | MR | Zbl

[13] Grigorev Yu. N., Ershov I. V., “Energeticheskaya otsenka kriticheskikh chisel Reinoldsa v szhimaemom techenii Kuetta. Vliyanie ob'emnoi vyazkosti”, PMTF, 51:5 (2010), 59–67 | MR | Zbl