The research of a mathematical model of immune response reinforcement with application of one-step and multistep methods
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 51-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models of immune response reinforcement as systems of ordinary differential equations are studied. Stationary solutions are obtained in a dimensionless form and their stability is shown. The results of numerical calculations demonstrate the mechanism of the antibody stimulator action.
Keywords: mathematical model, stationary solutions, stability, numerical methods.
@article{VTGU_2013_3_a6,
     author = {Sh. Kh. Sultonova and N. N. Merkulova},
     title = {The research of a mathematical model of immune response reinforcement with application of one-step and multistep methods},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {51--59},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a6/}
}
TY  - JOUR
AU  - Sh. Kh. Sultonova
AU  - N. N. Merkulova
TI  - The research of a mathematical model of immune response reinforcement with application of one-step and multistep methods
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 51
EP  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a6/
LA  - ru
ID  - VTGU_2013_3_a6
ER  - 
%0 Journal Article
%A Sh. Kh. Sultonova
%A N. N. Merkulova
%T The research of a mathematical model of immune response reinforcement with application of one-step and multistep methods
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 51-59
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2013_3_a6/
%G ru
%F VTGU_2013_3_a6
Sh. Kh. Sultonova; N. N. Merkulova. The research of a mathematical model of immune response reinforcement with application of one-step and multistep methods. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 51-59. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a6/

[1] G. I. Marchuk (red.), Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 299 pp. | MR

[2] G. I. Marchuk (red.), Matematicheskie modeli v immunologii i meditsine, Mir, M., 1986, 150 pp. | MR | Zbl

[3] Marchuk G. I., Matematicheskie modeli v immunologii, Nauka, M., 1985, 240 pp. | MR

[4] Lugovskaya Yu. P., Matematicheskoe modelirovanie optimalnykh protsessov lecheniya infektsionnykh zabolevanii, Avtoref. dis. ... kand. fiz.-mat. nauk, Samara, 2009

[5] G. I. Marchuk, L. N. Belykh (red.), Matematicheskie modeli v immunologii i meditsine, per. s angl., Mir, M., 1986, 310 pp. | MR | Zbl

[6] Belykh L. N., Marchuk G. I., “Kachestvennyi analiz prosteishei matematicheskoi modeli infektsionnogo zabolevaniya”, Matematicheskoe modelirovanie v immunologii i meditsine, Nauka, Novosibirsk, 1982, 5–26

[7] Merkulova N. N., Mikhailov M. D., Metody priblizhennykh vychislenii, ucheb. posobie, v. 2, TML-Press, Tomsk, 2007, 288 pp.

[8] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968, 720 pp. | MR