On approximately integrable $SO(3)$ structures on 5-dimensional manifolds
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 45-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, irreducible $SO(3)$ structures on a 5-dimentional manifold are considered. The covariant divergence of the structure tensor is shown to be zero for approximately integrable irreducible $SO(3)$ structures. Examples of left invariant irreducible $SO(3)$ structures on 5-dimentional Lie groups that have a zero covariant divergence of the structure tensor but are not approximately integrable, as well as of irreducible $SO(3)$ structures with nonzero covariant divergence of the structure tensor are presented.
Keywords:
special $SO(3)$ structure, 5-dimentional manifold
Mots-clés : Lie group.
Mots-clés : Lie group.
@article{VTGU_2013_3_a5,
author = {A. G. Sedykh},
title = {On approximately integrable $SO(3)$ structures on 5-dimensional manifolds},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {45--50},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a5/}
}
TY - JOUR AU - A. G. Sedykh TI - On approximately integrable $SO(3)$ structures on 5-dimensional manifolds JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 45 EP - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a5/ LA - ru ID - VTGU_2013_3_a5 ER -
A. G. Sedykh. On approximately integrable $SO(3)$ structures on 5-dimensional manifolds. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 45-50. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a5/