On application of the variable separation method to mathematical physics equations containing homogeneous functions of derivatives
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 37-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solutions of some evolutionary equations of mathematical physics containing homogeneous functions of derivatives were received using the variables separation method. The equations containing one or several homogeneous functions are considered. Solutions for some particular cases are analyzed.
Mots-clés : equation
Keywords: homogeneous function, variable separation method, partial derivative.
@article{VTGU_2013_3_a4,
     author = {I. V. Rakhmelevich},
     title = {On application of the variable separation method to mathematical physics equations containing homogeneous functions of derivatives},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {37--44},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a4/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - On application of the variable separation method to mathematical physics equations containing homogeneous functions of derivatives
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 37
EP  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a4/
LA  - ru
ID  - VTGU_2013_3_a4
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T On application of the variable separation method to mathematical physics equations containing homogeneous functions of derivatives
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 37-44
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2013_3_a4/
%G ru
%F VTGU_2013_3_a4
I. V. Rakhmelevich. On application of the variable separation method to mathematical physics equations containing homogeneous functions of derivatives. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 37-44. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a4/

[1] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[2] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1984 | MR

[3] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003 | Zbl