Optimization of calculations of plastic deformations in nonlinear problems of deformable solid mechanics
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 96-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article gives a numerical method for solving plasticity problems of the flow theory using the finite element method. The main characteristic of the method is the direct solution of a set of nonlinear constitutive equations by means of the software tools that implement residual minimization algorithm of a function. Operation of the program to determine strained-deformed state for the elastoplastic axisymmetrical problem has been presented. The advantages of this method in comparison with known methods of plastic flow analysis have been pointed out.
Keywords: finite element method, theory of plastic flow, approximation, hardening curves, iterative process, plasticity condition, yield point.
@article{VTGU_2013_3_a11,
     author = {P. V. Manahov and O. B. Fedoseev},
     title = {Optimization of calculations of plastic deformations in nonlinear problems of deformable solid mechanics},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {96--103},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a11/}
}
TY  - JOUR
AU  - P. V. Manahov
AU  - O. B. Fedoseev
TI  - Optimization of calculations of plastic deformations in nonlinear problems of deformable solid mechanics
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 96
EP  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a11/
LA  - ru
ID  - VTGU_2013_3_a11
ER  - 
%0 Journal Article
%A P. V. Manahov
%A O. B. Fedoseev
%T Optimization of calculations of plastic deformations in nonlinear problems of deformable solid mechanics
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 96-103
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2013_3_a11/
%G ru
%F VTGU_2013_3_a11
P. V. Manahov; O. B. Fedoseev. Optimization of calculations of plastic deformations in nonlinear problems of deformable solid mechanics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 96-103. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a11/

[1] Eremenko S. Yu., Metod konechnykh elementov v mekhanike deformiruemykh tel, Izd-vo «Osnova» pri Khark.un-te, Kharkov, 1991, 272 pp. | MR | Zbl

[2] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975, 541 pp.

[3] Manakhov P. V., Fedoseev O. B., “Ob alternativnom metode vychisleniya nakoplennoi plasticheskoi deformatsii v plasticheskikh zadachakh s ispolzovaniem metoda konechnykh elementov”, Izv. vuzov. Mashinostroenie, 2007, no. 7, 16–22

[4] Manakhov P. V., Fedoseev O. B., “Approksimatsiya krivykh uprochneniya stali 08Kh22N6T i stali 20 parabolicheskimi funktsiyami”, Vestnik mashinostroeniya, 2010, no. 4, 50–52

[5] Manakhov P. V., Fedoseev O. B., “Alternativnyi podkhod k resheniyu zadach teorii plastichnosti na primere uprugoplasticheskogo szhatiya tela pryamougolnogo secheniya”, Vestnik mashinostroeniya, 2009, no. 1, 25–27

[6] Manakhov P. V., Fedoseev O. B., “Chislennoe modelirovanie evolyutsii polei plasticheskikh deformatsii pri ispytaniyakh na tverdost s pomoschyu alternativnogo algoritma resheniya plasticheskikh zadach”, Vektor nauki TGU, 2011, no. 2(16), 114–116