On a hypersurface in the space of applied covectors
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 8-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper continues a series of the author's publications devoted to immersions of various manifolds into point-vector spaces (see examples in the list of references [2,3,7]). A six- dimensional point-vector space D6 is constructed for the original three-dimensional affine space. A point of the space is an applied covector and a vector is an ordered couple composed of a vector and a covector. A hypersurface of the obtained space contains pseudo-Riemannian metrics induced by the intrinsic metrics of space D6. A connection of the hypersurface called natural has been built, as well as the Levi–Civita connection. Geodesic lines of both connections are examined (for the first one, up to the full characterization).
Keywords: covector, pseudo-Riemannian space, Levi–Civita connection, geodesic lines.
@article{VTGU_2013_3_a1,
     author = {M. S. Bukhtyak},
     title = {On a hypersurface in the space of applied covectors},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {8--22},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_3_a1/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
TI  - On a hypersurface in the space of applied covectors
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 8
EP  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_3_a1/
LA  - ru
ID  - VTGU_2013_3_a1
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%T On a hypersurface in the space of applied covectors
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 8-22
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2013_3_a1/
%G ru
%F VTGU_2013_3_a1
M. S. Bukhtyak. On a hypersurface in the space of applied covectors. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2013), pp. 8-22. http://geodesic.mathdoc.fr/item/VTGU_2013_3_a1/

[1] Efimov N. V., Rozendorn E. R., Lineinaya algebra i mnogomernaya geometriya, Nauka, M., 1970, 528 pp. | MR

[2] Bukhtyak M. S., “Estestvennaya svyaznost na giperpoverkhnosti prostranstva $B_6$”, Geom. sb., 31, Izd-vo Tom. un-ta, Tomsk, 1990, 51–57

[3] Bukhtyak M. S., “Ob odnom shestimernom prostranstve”, Geom. sb., 22, Izd-vo Tom. un-ta, Tomsk, 1982, 51–61 | MR

[4] Finikov S. P., Metod vneshnikh form Kartana, GITTL, M.–L., 1948, 432 pp. | MR

[5] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsialnoi geometrii, v. 1, GONTI, M.–L., 1939, 181 pp.

[6] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Lan, SPb., M.; Krasnodar, 2005, 303 pp.

[7] Bukhtyak M. S., “Interpretatsiya nul-par trekhmernogo tsentroaffinnogo prostranstva”, Issledovaniya po matematicheskomu analizu i algebre, 3, TGU, Tomsk, 2001, 39–45

[8] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Kalininskii gosuniversitet, Kalinin, 1977, 83 pp. | MR | Zbl