On two classes of Hopfian Abelian groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2013), pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with hopficity of SP-groups and algebraically compact Abelian groups. Hopficity of SP-groups is reduced to hopficity of their primary components. A full description of Hopfian algebraically compact Abelian groups is presented. An example of a non-Hopfian algebraically compact Abelian group is given.
Keywords: Abelian group, Hopfian group, mixed group, algebraically compact group.
Mots-clés : SP-group
@article{VTGU_2013_2_a2,
     author = {E. V. Kaigorodov},
     title = {On two classes of {Hopfian} {Abelian} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--32},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2013_2_a2/}
}
TY  - JOUR
AU  - E. V. Kaigorodov
TI  - On two classes of Hopfian Abelian groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2013
SP  - 22
EP  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2013_2_a2/
LA  - ru
ID  - VTGU_2013_2_a2
ER  - 
%0 Journal Article
%A E. V. Kaigorodov
%T On two classes of Hopfian Abelian groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2013
%P 22-32
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2013_2_a2/
%G ru
%F VTGU_2013_2_a2
E. V. Kaigorodov. On two classes of Hopfian Abelian groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2013), pp. 22-32. http://geodesic.mathdoc.fr/item/VTGU_2013_2_a2/

[1] Nielsen J., “Om Regning med ikke kommutative Faktorer og dens Anvendelse i Gruppeteorien”, Mathematisk Tidsskrift B, 1921 (1921), 77–94 | Zbl

[2] Hopf H., “Zur Algebra der Abbildungen von Mannigfaltigkeiten”, J. Reine und Angew. Math., 163:2 (1930), 71–88 | Zbl

[3] Hopf H., “Beiträge zur Klassifizerung der Flächenabbildungen”, J. Reine und Angew. Math., 165:2 (1931), 225–226 | Zbl

[4] Kaigorodov E. V., “Khopfovy abelevy gruppy”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2012, no. 2(18), 5–12

[5] Fuchs L., Rangaswamy K. V., “On generalized regular rings”, Math. Z., 107 (1968), 71–81 | DOI | MR | Zbl

[6] Fuks L., Beskonechnye abelevy gruppy, v 2 t., v. 2, Mir, M., 1977, 417 pp.

[7] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed abelian groups”, Commun. Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl

[8] Vinsonhaler C., Wickless W. J., “Realizations of finite dimensional algebras over the rationales”, Rocky Mountain J. Math., 24:4 (1994), 1553–1565 | DOI | MR | Zbl

[9] Albrecht U. F., Goeters H. P., Wickless W., “The flat dimension of mixed abelian groups as Emodules”, Rocky Mountain J. Math., 25:2 (1995), 569–590 | DOI | MR | Zbl

[10] Krylov P. A., Pakhomova E. G., Podberezina E. I., “Ob odnom klasse smeshannykh abelevykh grupp”, Vestnik Tomskogo gosudarstvennogo universiteta, 269 (2001), 46–50

[11] Fuks L., Beskonechnye abelevy gruppy, v 2 t., v. 1, Mir, M., 1974, 335 pp.

[12] Kaplansky I., Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, Michigan, 1954 | MR | Zbl

[13] Krylov P. A., Tuganbaev A. A., Moduli nad oblastyami diskretnogo normirovaniya, Advanced Studies in Mathematics and Mechanics, 3, Faktorial Press, M., 2007, 384 pp.

[14] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006, 512 pp.