Mots-clés : aggravation mode.
@article{VTGU_2013_1_a7,
author = {P. V. Makarov and M. O. Eremin},
title = {Simulation of ceramic compositional materials fracture upon uniaxial compression},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {61--74},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2013_1_a7/}
}
TY - JOUR AU - P. V. Makarov AU - M. O. Eremin TI - Simulation of ceramic compositional materials fracture upon uniaxial compression JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2013 SP - 61 EP - 74 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTGU_2013_1_a7/ LA - ru ID - VTGU_2013_1_a7 ER -
%0 Journal Article %A P. V. Makarov %A M. O. Eremin %T Simulation of ceramic compositional materials fracture upon uniaxial compression %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2013 %P 61-74 %N 1 %U http://geodesic.mathdoc.fr/item/VTGU_2013_1_a7/ %G ru %F VTGU_2013_1_a7
P. V. Makarov; M. O. Eremin. Simulation of ceramic compositional materials fracture upon uniaxial compression. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2013), pp. 61-74. http://geodesic.mathdoc.fr/item/VTGU_2013_1_a7/
[1] Panin V. E., Korotaev A. D., Makarov P. V., Kuznetsov V. M., “Fizicheskaya mezomekhanika materialov”, Izv. vuzov. Fizika, 1998, no. 9, 8–36 | MR
[2] Makarov P. V., “Matematicheskaya teoriya evolyutsii nagruzhaemykh tverdykh tel i sred”, Fiz. mezomekh., 11:3 (2008), 19–35
[3] Kurdyumov S. P., Rezhimy s obostreniem. Evolyutsiya idei, 2-e izd., ispr. i dop., ed. G. G. Malinetskii, Fizmatlit, M., 2006, 312 pp.
[4] Makarov P. V., “Samoorganizovannaya kritichnost deformatsionnykh protsessov i perspektivy prognoza razrusheniya”, Fiz. mezomekh., 13:5 (2010), 97–112
[5] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1974, 416 pp.
[6] Makarov P. V., “Evolyutsionnaya priroda blochnoi organizatsii geomaterialov i geosred. Universalnyi kriterii fraktalnoi delimosti”, Geologiya i geofizika, 48:7 (2007), 724–746
[7] Makarov P. V., Smolin I. Yu., Stefanov Yu. P. i dr., Nelineinaya mekhanika geomaterialov i geosred, Akademich. izd-vo «Geo», Novosibirsk, 2007, 235 pp.
[8] Makarov P. V., “Nagruzhaemyi material kak nelineinaya dinamicheskaya sistema. Problemy modelirovaniya”, Fiz. mezomekh., 8:6 (2005), 39–56
[9] Evtushenko E. P., Eremin M. O., Kostandov Yu. A. i dr., “Modelirovanie razrusheniya khrupkikh i kvazikhrupkikh tel i geosred”, Fiz. mezomekh., 15:3 (2012), 35–44
[10] Garagash I. A., Nikolaevskii V. N., “Neassotsiirovannye zakony techeniya i lokalizatsii plasticheskoi deformatsii”, Uspekhi mekhaniki, 12:1 (1989), 131–183 | MR
[11] Zhurkov S. N., Narzullaev B. N., “Vremennaya zavisimost prochnosti tverdykh tel”, ZhTF, XXIII:10 (1953), 1677–1689
[12] Orowan E. J., West Scot. Iron and Steel Inst., 54 (1947), 45
[13] Uilkins M. L., “Raschet uprugoplasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263
[14] Barenblatt G. I., Cherepanov G. P., “O vliyanii granits tela na razvitie treschin khrupkogo razrusheniya”, Izv. AN SSSR, OTN, mekhanika i mashinostroenie, 1960, no. 3
[15] Eremin M. O., Makarov P. V., Smolin I. Yu. i dr., “Izuchenie vliyaniya orientatsii treschiny na razrushenie khrupkikh obraztsov pri szhatii”, Materialy XXI Mezhdunarodnoi nauchnoi shkoly, 2011, Tavrich. nats. un-t, Simferopol, 412